962 resultados para Prostate-Specific Antigen
Resumo:
Thirty-five HLA-A2(+) patients with completely resected stage I-III melanoma were vaccinated multiple times over 6 months with a modified melanoma peptide, gp100(209-2M), emulsified in Montanide adjuvant. Direct ex vivo gp100(209-2M) tetramer analysis of pre- and postvaccine peripheral blood mononuclear cells (PBMCs) demonstrated significant increases in the frequency of tetramer(+) CD8(+) T cells after immunization for 33 of 35 evaluable patients (median, 0.36%; range, 0.05-8.9%). Ex vivo IFN-gamma cytokine flow cytometry analysis of postvaccine PBMCs after brief gp100(209-2M) in vitro activation showed that for all of the patients studied tetramer(+) CD8(+) T cells produced IFN-gamma; however, some patients had significant numbers of tetramer(+) IFN-gamma(-) CD8(+)T cells suggesting functional anergy. Additionally, 8 day gp100(209-2M) in vitro stimulation (IVS) of pre- and postvaccine PBMCs resulted in significant expansion of tetramer(+) CD8(+) T cells from postvaccine cells for 34 patients, and these IVS tetramer(+) CD8(+) T cells were functionally responsive by IFN-gamma cytokine flow cytometry analysis after restimulation with either native or modified gp100 peptide. However, correlated functional and phenotype analysis of IVS-expanded postvaccine CD8(+) T cells demonstrated the proliferation of functionally anergic gp100(209-2M)- tetramer(+) CD8(+) T cells in several patients and also indicated interpatient variability of gp100(209-2M) stimulated T-cell proliferation. Flow cytometry analysis of cryopreserved postvaccine PBMCs from representative patients showed that the majority of tetramer(+) CD8+ T cells (78.1 +/- 4.2%) had either an "effector" (CD45 RA(+)/CCR7(-)) or an "effector-memory" phenotype (CD45RA(-)/CCR7(-)). Notably, analysis of PBMCs collected 12-24 months after vaccine therapy demonstrated the durable presence of gp100(209-2M)-specific memory CD8(+) T cells with high proliferation potential. Overall, this report demonstrates that after vaccination with a MHC class I-restricted melanoma peptide, resected nonmetastatic melanoma patients can mount a significant antigen-specific CD8(+) T-cell immune response with a functionally intact memory component. The data further support the combined use of tetramer binding and functional assays in correlated ex vivo and IVS settings as a standard for immunomonitoring of cancer vaccine patients.
Resumo:
Since new technologies based on solid phase assays (SPA) have been routinely incorporated in the transplant immunology laboratory, the presence of pretransplantation donor-specific antibodies (DSA) against human leukocyte antigen (HLA) molecules has generally been considered as a risk factor for acute rejection (AR) and, in particular, for acute humoral rejection (AHR). We retrospectively studied 113 kidney transplant recipients who had negative prospective T-cell and B-cell complement-dependent cytotoxicity (CDC) crossmatches at the time of transplant. Pretransplantation sera were screened for the presence of circulating anti-HLA antibody and DSA by using highly sensitive and HLA-specific Luminex assay, and the results were correlated with AR and AHR posttransplantation. We found that approximately half of our patient population (55/113, 48.7%) had circulating anti-HLA antibody pretransplantation. Of 113 patients, 11 (9.7%) had HLA-DSA. Of 11 rejection episodes post-transplant, only two patients had pretransplantation DSA, of whom one had a severe AHR (C4d positive). One-year allograft survival was similar between the pretransplantation DSA-positive and -negative groups. Number, class, and intensity of pretransplantation DSA, as well as presensitizing events, could not predict AR. We conclude that, based on the presence of pretransplantation DSA, post-transplantation acute rejections episodes could not have been predicted. The only AHR episode occurred in a recipient with pretransplantation DSA. More work should be performed to better delineate the precise clinical significance of detecting low titers of DSA before transplantation.
Resumo:
The relatively low frequencies of tumor Ag-specific T-cells in PBMC and metastases from cancer patients have long precluded the analysis of their direct ex vivo cytolytic capacity. Using a new composite technique that works well with low cell numbers, we aimed at determining the functional competence of melanoma-specific CD8(+) T-cells. A multiparameter flow cytometry based technique was applied to assess the cytolytic function, degranulation and IFNγ production by tumor Ag-specific CD8(+) T-cells from PBMC and tumor-infiltrated lymph nodes (TILN) of melanoma patients. We found strong cytotoxicity by T-cells not only when they were isolated from PBMC but also from TILN. Cytotoxicity was observed against peptide-pulsed target cells and melanoma cells presenting the naturally processed endogenous antigen. However, unlike their PBMC-derived counterparts, T-cells from TILN produced only minimal amounts of IFNγ, while exhibiting similar levels of degranulation, revealing a critical functional dichotomy in metastatic lesions. Our finding of partial functional impairment fits well with the current knowledge that T-cells from cancer metastases are so-called exhausted, a state of T-cell hyporesponsiveness also found in chronic viral infections. The identification of responsible mechanisms in the tumor microenvironment is important for improving cancer therapies.
Resumo:
The activation of an apo-cytochrome c-specific T cell clone was found to differ, depending on the antigen-presenting cell population. Whereas total syngeneic spleen cells and bone marrow macrophages could be shown to trigger proliferation, IL 2, and MAF production by the T cell clone, a B cell lymphoma only induced MAF secretion. Further studies demonstrated that this effect was not due to a different antigen processing by the B lymphoma or to limiting amounts of Ia and antigen molecules on the B lymphoma cell surface. The dissociation of induction of MAF production from IL-2 production/proliferation found with the different antigen-presenting cells indicates strongly that molecules other than Ia and antigen may be required for the complete functional activation of antigen-specific T cell clones.
Resumo:
The treatment of advanced prostate cancer (PCa) remains a challenge. Identification of new molecular mechanisms that regulate PCa initiation and progression would provide targets for the development of new cancer treatments. The Foxm1 transcription factor is highly up-regulated in tumor cells, inflammatory cells, and cells of tumor microenvironment. However, its functions in different cell populations of PCa lesions are unknown. To determine the role of Foxm1 in tumor cells during PCa development, we generated two novel transgenic mouse models, one exhibiting Foxm1 gain-of-function and one exhibiting Foxm1 loss-of-function under control of the prostate epithelial-specific Probasin promoter. In the transgenic adenocarcinoma mouse prostate (TRAMP) model of PCa that uses SV40 large T antigen to induce PCa, loss of Foxm1 decreased tumor growth and metastasis. Decreased prostate tumorigenesis was associated with a decrease in tumor cell proliferation and the down-regulation of genes critical for cell proliferation and tumor metastasis, including Cdc25b, Cyclin B1, Plk-1, Lox, and Versican. In addition, tumor-associated angiogenesis was decreased, coinciding with reduced Vegf-A expression. The mRNA and protein levels of 11β-Hsd2, an enzyme playing an important role in tumor cell proliferation, were down-regulated in Foxm1-deficient PCa tumors in vivo and in Foxm1-depleted TRAMP C2 cells in vitro. Foxm1 bound to, and increased transcriptional activity of, the mouse 11β-Hsd2 promoter through the -892/-879 region, indicating that 11β-Hsd2 was a direct transcriptional target of Foxm1. Without TRAMP, overexpression of Foxm1 either alone or in combination with inhibition of a p19(ARF) tumor suppressor caused a robust epithelial hyperplasia, but was insufficient to induce progression from hyperplasia to PCa. Foxm1 expression in prostate epithelial cells is critical for prostate carcinogenesis, suggesting that inhibition of Foxm1 is a promising therapeutic approach for prostate cancer chemotherapy.
Resumo:
Antitumor immunity is strongly influenced by the balance of tumor antigen-specific effector and regulatory T cells. However, the impact that vaccine adjuvants have in regulating the balance of antigen-specific T cell populations is not well understood. We found that antigen-specific T regulatory cells (Treg) were induced following subcutaneous vaccination with either OVA or melanoma-derived peptides, with a restricted expansion of effector T cells. Addition of the adjuvants CpG-ODN or Poly(I:C) preferentially amplified effector T cells over Tregs, dramatically increasing the antigen-specific T effector:Treg ratios and inducing polyfunctional effector cells. In contrast, two other adjuvants, imiquimod and Quil A saponin, favored an expansion of antigen-specific Tregs and failed to increase effector T cell:Treg ratios. Following therapeutic vaccination of tumor-bearing mice, high ratios of tumor-specific effector T cells:Tregs in draining lymph nodes were associated with enhanced CD8+ T cell infiltration at the tumor site and a durable rejection of tumors. Vaccine formulations of peptide+CpG-ODN or Poly(I:C) induced selective production of pro-inflammatory Type I cytokines early after vaccination. This environment promoted CD8+ and CD4+ effector T cell expansion over that of antigen-specific Tregs, tipping the effector T cell to Treg balance to favor effector cells. Our findings advance understanding of the influence of different adjuvants on T cell populations, facilitating the rational design of more effective cancer vaccines.
Resumo:
Although melanoma vaccines stimulate tumor antigen-specific CD8(+) T cells, objective clinical responses are rarely observed. To investigate this discrepancy, we evaluated the character of vaccine-induced CD8(+) T cells with regard to the inhibitory T-cell coreceptors PD-1 and Tim-3 in patients with metastatic melanoma who were administered tumor vaccines. The vaccines included incomplete Freund's adjuvant, CpG oligodeoxynucleotide (CpG), and the HLA-A2-restricted analog peptide NY-ESO-1 157-165V, either by itself or in combination with the pan-DR epitope NY-ESO-1 119-143. Both vaccines stimulated rapid tumor antigen-specific CD8(+) T-cell responses detected ex vivo, however, tumor antigen-specific CD8(+) T cells produced more IFN-γ and exhibited higher lytic function upon immunization with MHC class I and class II epitopes. Notably, the vast majority of vaccine-induced CD8(+) T cells upregulated PD-1 and a minority also upregulated Tim-3. Levels of PD-1 and Tim-3 expression by vaccine-induced CD8(+) T cells at the time of vaccine administration correlated inversely with their expansion in vivo. Dual blockade of PD-1 and Tim-3 enhanced the expansion and cytokine production of vaccine-induced CD8(+) T cells in vitro. Collectively, our findings support the use of PD-1 and Tim-3 blockades with cancer vaccines to stimulate potent antitumor T-cell responses and increase the likelihood of clinical responses in patients with advanced melanoma.
Resumo:
To gain further insights into the role of T lymphocytes in immune responses against bladder tumors, we developed a method that monitors the presence of functional antigen-specific T cells in the urine of non-muscle invasive bladder cancer patients. As relatively few immune cells can usually be recovered from urine, we examined different isolation/amplification protocols and took advantage of patients treated with weekly intravesical instillations of Bacillus Calmette-Guérin, resulting in large amounts of immune cells into urine. Our findings demonstrate that, upon in vitro amplification, antigen-specific T cells can be detected by an interferon γ (IFNγ)-specific ELISPOT assay.
Resumo:
Hepatic natural killer (NK) cells mediate antigen-specific contact hypersensitivity (CHS) in mice deficient in T cells and B cells. We report here that hepatic NK cells, but not splenic or naive NK cells, also developed specific memory of vaccines containing antigens from influenza, vesicular stomatitis virus (VSV) or human immunodeficiency virus type 1 (HIV-1). Adoptive transfer of virus-sensitized NK cells into naive recipient mice enhanced the survival of the mice after lethal challenge with the sensitizing virus but not after lethal challenge with a different virus. NK cell memory of haptens and viruses depended on CXCR6, a chemokine receptor on hepatic NK cells that was required for the persistence of memory NK cells but not for antigen recognition. Thus, hepatic NK cells can develop adaptive immunity to structurally diverse antigens, an activity that requires NK cell-expressed CXCR6.
Resumo:
Direct identification as well as isolation of antigen-specific T cells became possible since the development of "tetramers" based on avidin-fluorochrome conjugates associated with mono-biotinylated class I MHC-peptide monomeric complexes. In principle, a series of distinct class I MHC-peptide tetramers, each labelled with a different fluorochrome, would allow to simultaneously enumerate as many unique antigen-specific CD8(+) T cells. Practically, however, only phycoerythrin and allophycocyanin conjugated tetramers have been generally available, imposing serious constraints for multiple labeling. To overcome this limitation, we have developed dextramers which are multimers based on a dextran backbone bearing multiple fluorescein and streptavidin moieties. Here we demonstrate the functionality and optimization of these new probes on human CD8(+) T cell clones with four independent antigen specificities. Their applications to the analysis of relatively low frequency antigen-specific T cells in peripheral blood, as well as their use in fluorescence microscopy, are demonstrated. The data show that dextramers produce a stronger signal than their fluoresceinated tetramer counterparts. Thus, these could become the reagents of choice as the antigen-specific T cell labeling transitions from basic research to clinical application.
Resumo:
Ex vivo ELISPOT and multimer staining are well-established tests for the assessment of antigen-specific T cells. Many laboratories are now using a period of in vitro stimulation (IVS) to enhance detection. Here, we report the findings of a multi-centre panel organised by the Association for Cancer Immunotherapy Immunoguiding Program to investigate the impact of IVS protocols on the detection of antigen-specific T cells of varying ex vivo frequency. Five centres performed ELISPOT and multimer staining on centrally prepared PBMCs from 3 donors, both ex vivo and following IVS. A harmonised IVS protocol was designed based on the best-performing protocol(s), which was then evaluated in a second phase on 2 donors by 6 centres. All centres were able to reliably detect antigen-specific T cells of high/intermediate frequency both ex vivo (Phase I) and post-IVS (Phase I and II). The highest frequencies of antigen-specific T cells ex vivo were mirrored in the frequencies following IVS and in the detection rates. However, antigen-specific T cells of a low/undetectable frequency ex vivo were not reproducibly detected post-IVS. Harmonisation of the IVS protocol reduced the inter-laboratory variation observed for ELISPOT and multimer analyses by approximately 20 %. We further demonstrate that results from ELISPOT and multimer staining correlated after (P < 0.0001 and R (2) = 0.5113), but not before IVS. In summary, IVS was shown to be a reproducible method that benefitted from method harmonisation.
Resumo:
Tumor antigen-specific cytotoxic T cells (CTLs) play a major role in the adaptive immune response to cancers. This CTL response is often insufficient because of functional impairment, tumor escape mechanisms, or inhibitory tumor microenvironment. However, little is known about the fate of given tumor-specific CTL clones in cancer patients. Studies in patients with favorable outcomes may be very informative. In this longitudinal study, we tracked, quantified, and characterized functionally defined antigen-specific T-cell clones ex vivo, in peripheral blood and at tumor sites, in two long-term melanoma survivors. MAGE-A10-specific CD8+ T-cell clones with high avidity to antigenic peptide and tumor lytic capabilities persisted in peripheral blood over more than 10 years, with quantitative variations correlating with the clinical course. These clones were also found in emerging metastases, and, in one patient, circulating clonal T cells displayed a fully differentiated effector phenotype at the time of relapse. Longevity, tumor homing, differentiation phenotype, and quantitative adaptation to the disease phases suggest the contribution of the tracked tumor-reactive clones in the tumor control of these long-term metastatic survivor patients. Focusing research on patients with favorable outcomes may help to identify parameters that are crucial for an efficient antitumor response and to optimize cancer immunotherapy.
Resumo:
We tested for antigen recognition and T cell receptor (TCR)-ligand binding 12 peptide derivative variants on seven H-2Kd-restricted cytotoxic T lymphocytes (CTL) clones specific for a bifunctional photoreactive derivative of the Plasmodium berghei circumsporozoite peptide 252-260 (SYIPSAEKI). The derivative contained iodo-4-azidosalicylic acid in place of PbCS S-252 and 4-azidobenzoic acid on PbCS K-259. Selective photoactivation of the N-terminal photoreactive group allowed crosslinking to Kd molecules and photoactivation of the orthogonal group to TCR. TCR photoaffinity labeling with covalent Kd-peptide derivative complexes allowed direct assessment of TCR-ligand binding on living CTL. In most cases (over 80%) cytotoxicity (chromium release) and TCR-ligand binding differed by less than fivefold. The exceptions included (a) partial TCR agonists (8 cases), for which antigen recognition was five-tenfold less efficient than TCR-ligand binding, (b) TCR antagonists (2 cases), which were not recognized and capable of inhibiting recognition of the wild-type conjugate, (c) heteroclitic agonists (2 cases), for which antigen recognition was more efficient than TCR-ligand binding, and (d) one partial TCR agonist, which activated only Fas (C1)95), but not perforin/granzyme-mediated cytotoxicity. There was no correlation between these divergences and the avidity of TCR-ligand binding, indicating that other factors than binding avidity determine the nature of the CTL response. An unexpected and novel finding was that CD8-dependent clones clearly incline more to TCR antagonism than CD8-independent ones. As there was no correlation between CD8 dependence and the avidity of TCR-ligand binding, the possibility is suggested that CD8 plays a critical role in aberrant CTL function.
Resumo:
Modern cancer therapies should strive not only to eliminate malignant tissues but also to preserve healthy tissues and the patient's quality of life. Antigen-specific immunotherapy approaches are promising for either aspect since they are designed to only act against tissues expressing 1 or more specified tumour antigens. In order to develop successful vaccine and adoptive transfer protocols, longitudinal monitoring of cancer patients taking part in clinical trials is mandatory. Here, in vivo expansion of antigen-specific cells, as well as their ex vivo functional status represent important parameters to be analysed. To obtain results that most closely reflect the cells' in vivo status, functional assays must be carried out with as little in vitro culturing as possible. The present minireview discusses recent advances in these domains.