369 resultados para Prochilodus scrofa
Resumo:
Fibronectin type II (Fn2) module-containing proteins in the male genital tract are characterized by different numbers of Fn2 modules. Predominantly two classes exist which are distinct by having either two or four Fn2 modules. Minor variants with three Fn2 modules were also found in the human and the porcine epididymis. To reveal their relationship, mRNAs and proteins of representatives of these classes were studied in human, in Sus scrofa, and in rodents. Adult boars expressed members of both classes, i.e. ELSPBP1 and pB1, in subsequent regions of the epididymis, and both were under androgenic control. Human and rodent epididymides, on the other hand, alternatively contained only representatives of one of these two classes, i.e. ELSPBP1 in the human and two different pB1-related counterparts in rodents. ELSPBP1 and pB1-related genomic sequences were closely linked in chromosomal regions HSA 19q and SSC 6 q11-q21; conserved synteny between these regions is well established. On the other hand, in a syntenic region on mouse chromosome 7, ELSPBP1-related sequences were lacking. Tight binding to the sperm membrane via a choline-mediated mechanism was a common feature of the two classes of Fn2-module proteins, suggesting related function(s). However, differences in their regionalized expression patterns along the male genital tract as well as in association sites on the sperm surface suggested a species-specific sequential order in sperm binding.
Resumo:
Provision of additional floor heating (33 to 34 degrees C) at birth and during the early postnatal hours is favorable for newborn piglets of domestic sows (Sus scrofa). We investigated whether this relatively high temperature influenced sow behavior and physiology around farrowing. One-half of 28 second-parity pregnant sows were randomly chosen to be exposed to floor heating 12 h after onset of nest building and until 48 h after birth of the first piglet (heat treatment), whereas the rest of the sows entered the control group (control treatment) with no floor heating. Hourly blood sampling from 8 h before and until 24 h after the birth of the first piglet was used for investigation of temporal changes in plasma concentrations of oxytocin, cortisol, and ACTH. In addition, occurrence and duration of sow postures were recorded -8 to +48 h relative to the birth of the first piglet. There was a clear temporal development in sow behavior and hormone concentrations (ACTH, cortisol, and oxytocin) across parturition (P < 0.001), independent of treatment. In general, hormone concentrations increased from the start to the end of farrowing. The observed oxytocin increase and peak late in farrowing coincided with the passive phase where sows lie laterally with an overall reduced activity. Floor heating increased the mean concentration of cortisol (P = 0.02; estimated as 29% greater than in controls) and tended to increase the mean concentration of ACTH (P = 0.08; estimated as 17% greater than in controls), but we did not find any treatment effect on mean oxytocin concentrations, the course of parturition, or the behavior of sows. Behavioral thermoregulation may, however, have lost some function for the sows because the floor was fully heated in our study. In addition, exposure to heat decreased the between-sow variation of plasma oxytocin (approximately 31% less relative to control) and ACTH (approximately 46% less relative to control). Whether this decreased variation may be indicative of acute stress or linked to other biological events is unclear. In conclusion, inescapable floor heating (around 33.5 degrees C) may be considered a stressor for sows around farrowing, giving rise to elevated plasma concentrations of cortisol, but without concurrent changes in oxytocin or behavioral activity.
Resumo:
Bovine tuberculosis (bTB) caused by Mycobacterium bovis or M. caprae has recently (re-) emerged in livestock and wildlife in all countries bordering Switzerland (CH) and the Principality of Liechtenstein (FL). Comprehensive data for Swiss and Liechtenstein wildlife are not available so far, although two native species, wild boar (Sus scrofa) and red deer (Cervus elaphus elaphus), act as bTB reservoirs elsewhere in continental Europe. Our aims were (1) to assess the occurrence of bTB in these wild ungulates in CH/FL and to reinforce scanning surveillance in all wild mammals; (2) to evaluate the risk of a future bTB reservoir formation in wild boar and red deer in CH/FL. Tissue samples collected from 2009 to 2011 from 434 hunted red deer and wild boar and from eight diseased ungulates with tuberculosis-like lesions were tested by direct real-time PCR and culture to detect mycobacteria of the Mycobacterium tuberculosis complex (MTBC). Identification of suspicious colonies was attempted by real-time PCR, genotyping and spoligotyping. Information on risk factors for bTB maintenance within wildlife populations was retrieved from the literature and the situation regarding identified factors was assessed for our study areas. Mycobacteria of the MTBC were detected in six out of 165 wild boar (3.6%; 95% CI: 1.4-7.8) but none of the 269 red deer (0%; 0-1.4). M. microti was identified in two MTBC-positive wild boar, while species identification remained unsuccessful in four cases. Main risk factors for bTB maintenance worldwide, including different causes of aggregation often resulting from intensive wildlife management, are largely absent in CH and FL. In conclusion, M. bovis and M. caprae were not detected but we report for the first time MTBC mycobacteria in Swiss wild boar. Present conditions seem unfavorable for a reservoir emergence, nevertheless increasing population numbers of wild ungulates and offal consumption may represent a risk.
Resumo:
Over the last few years, we have seen an increasing interest and demand for pigs in biomedical research. Domestic pigs (Sus scrofa domesticus) are closely related to humans in terms of their anatomy, genetics, and physiology, and often are the model of choice for the assessment of novel vaccines and therapeutics in a preclinical stage. However, the pig as a model has much more to offer, and can serve as a model for many biomedical applications including aging research, medical imaging, and pharmaceutical studies to name a few. In this review, we will provide an overview of the innate immune system in pigs, describe its anatomical and physiological key features, and discuss the key players involved. In particular, we compare the porcine innate immune system to that of humans, and emphasize on the importance of the pig as model for human disease.