945 resultados para Probability Distribution Function
Resumo:
A method to estimate an extreme quantile that requires no distributional assumptions is presented. The approach is based on transformed kernel estimation of the cumulative distribution function (cdf). The proposed method consists of a double transformation kernel estimation. We derive optimal bandwidth selection methods that have a direct expression for the smoothing parameter. The bandwidth can accommodate to the given quantile level. The procedure is useful for large data sets and improves quantile estimation compared to other methods in heavy tailed distributions. Implementation is straightforward and R programs are available.
Resumo:
This paper focuses on one of the methods for bandwidth allocation in an ATM network: the convolution approach. The convolution approach permits an accurate study of the system load in statistical terms by accumulated calculations, since probabilistic results of the bandwidth allocation can be obtained. Nevertheless, the convolution approach has a high cost in terms of calculation and storage requirements. This aspect makes real-time calculations difficult, so many authors do not consider this approach. With the aim of reducing the cost we propose to use the multinomial distribution function: the enhanced convolution approach (ECA). This permits direct computation of the associated probabilities of the instantaneous bandwidth requirements and makes a simple deconvolution process possible. The ECA is used in connection acceptance control, and some results are presented
Resumo:
1. We investigated experimentally predation by the flatworm Dugesia lugubris on the snail Physa acuta in relation to predator body length and to prey morphology [shell length (SL) and aperture width (AW)]. 2. SL and AW correlate strongly in the field, but display significant and independent variance among populations. In the laboratory, predation by Dugesia resulted in large and significant selection differentials on both SL and AW. Analysis of partial effects suggests that selection on AW was indirect, and mediated through its strong correlation with SL. 3. The probability P(ij) for a snail of size category i (SL) to be preyed upon by a flatworm of size category j was fitted with a Poisson-probability distribution, the mean of which increased linearly with predator size (i). Despite the low number of parameters, the fit was excellent (r2 = 0.96). We offer brief biological interpretations of this relationship with reference to optimal foraging theory. 4. The largest size class of Dugesia (>2 cm) did not prey on snails larger than 7 mm shell length. This size threshold might offer Physa a refuge against flatworm predation and thereby allow coexistence in the field. 5. Our results are further discussed with respect to previous field and laboratory observations on P acuta life-history patterns, in particular its phenotypic variance in adult body size.
Resumo:
PURPOSE: In the radiopharmaceutical therapy approach to the fight against cancer, in particular when it comes to translating laboratory results to the clinical setting, modeling has served as an invaluable tool for guidance and for understanding the processes operating at the cellular level and how these relate to macroscopic observables. Tumor control probability (TCP) is the dosimetric end point quantity of choice which relates to experimental and clinical data: it requires knowledge of individual cellular absorbed doses since it depends on the assessment of the treatment's ability to kill each and every cell. Macroscopic tumors, seen in both clinical and experimental studies, contain too many cells to be modeled individually in Monte Carlo simulation; yet, in particular for low ratios of decays to cells, a cell-based model that does not smooth away statistical considerations associated with low activity is a necessity. The authors present here an adaptation of the simple sphere-based model from which cellular level dosimetry for macroscopic tumors and their end point quantities, such as TCP, may be extrapolated more reliably. METHODS: Ten homogenous spheres representing tumors of different sizes were constructed in GEANT4. The radionuclide 131I was randomly allowed to decay for each model size and for seven different ratios of number of decays to number of cells, N(r): 1000, 500, 200, 100, 50, 20, and 10 decays per cell. The deposited energy was collected in radial bins and divided by the bin mass to obtain the average bin absorbed dose. To simulate a cellular model, the number of cells present in each bin was calculated and an absorbed dose attributed to each cell equal to the bin average absorbed dose with a randomly determined adjustment based on a Gaussian probability distribution with a width equal to the statistical uncertainty consistent with the ratio of decays to cells, i.e., equal to Nr-1/2. From dose volume histograms the surviving fraction of cells, equivalent uniform dose (EUD), and TCP for the different scenarios were calculated. Comparably sized spherical models containing individual spherical cells (15 microm diameter) in hexagonal lattices were constructed, and Monte Carlo simulations were executed for all the same previous scenarios. The dosimetric quantities were calculated and compared to the adjusted simple sphere model results. The model was then applied to the Bortezomib-induced enzyme-targeted radiotherapy (BETR) strategy of targeting Epstein-Barr virus (EBV)-expressing cancers. RESULTS: The TCP values were comparable to within 2% between the adjusted simple sphere and full cellular models. Additionally, models were generated for a nonuniform distribution of activity, and results were compared between the adjusted spherical and cellular models with similar comparability. The TCP values from the experimental macroscopic tumor results were consistent with the experimental observations for BETR-treated 1 g EBV-expressing lymphoma tumors in mice. CONCLUSIONS: The adjusted spherical model presented here provides more accurate TCP values than simple spheres, on par with full cellular Monte Carlo simulations while maintaining the simplicity of the simple sphere model. This model provides a basis for complementing and understanding laboratory and clinical results pertaining to radiopharmaceutical therapy.
Resumo:
The vast territories that have been radioactively contaminated during the 1986 Chernobyl accident provide a substantial data set of radioactive monitoring data, which can be used for the verification and testing of the different spatial estimation (prediction) methods involved in risk assessment studies. Using the Chernobyl data set for such a purpose is motivated by its heterogeneous spatial structure (the data are characterized by large-scale correlations, short-scale variability, spotty features, etc.). The present work is concerned with the application of the Bayesian Maximum Entropy (BME) method to estimate the extent and the magnitude of the radioactive soil contamination by 137Cs due to the Chernobyl fallout. The powerful BME method allows rigorous incorporation of a wide variety of knowledge bases into the spatial estimation procedure leading to informative contamination maps. Exact measurements (?hard? data) are combined with secondary information on local uncertainties (treated as ?soft? data) to generate science-based uncertainty assessment of soil contamination estimates at unsampled locations. BME describes uncertainty in terms of the posterior probability distributions generated across space, whereas no assumption about the underlying distribution is made and non-linear estimators are automatically incorporated. Traditional estimation variances based on the assumption of an underlying Gaussian distribution (analogous, e.g., to the kriging variance) can be derived as a special case of the BME uncertainty analysis. The BME estimates obtained using hard and soft data are compared with the BME estimates obtained using only hard data. The comparison involves both the accuracy of the estimation maps using the exact data and the assessment of the associated uncertainty using repeated measurements. Furthermore, a comparison of the spatial estimation accuracy obtained by the two methods was carried out using a validation data set of hard data. Finally, a separate uncertainty analysis was conducted that evaluated the ability of the posterior probabilities to reproduce the distribution of the raw repeated measurements available in certain populated sites. The analysis provides an illustration of the improvement in mapping accuracy obtained by adding soft data to the existing hard data and, in general, demonstrates that the BME method performs well both in terms of estimation accuracy as well as in terms estimation error assessment, which are both useful features for the Chernobyl fallout study.
Resumo:
We present analytical calculations of the turn-on-time probability distribution of intensity-modulated lasers under resonant weak optical feedback. Under resonant conditions, the external cavity round-trip time is taken to be equal to the modulation period. The probability distribution of the solitary laser results are modified to give reduced values of the mean turn-on-time and its variance. Numerical simulations have been carried out showing good agreement with the analytical results.
Resumo:
We introduce a class of exactly solvable models exhibiting an ordering noise-induced phase transition in which order arises as a result of a balance between the relaxing deterministic dynamics and the randomizing character of the fluctuations. A finite-size scaling analysis of the phase transition reveals that it belongs to the universality class of the equilibrium Ising model. All these results are analyzed in the light of the nonequilibrium probability distribution of the system, which can be obtained analytically. Our results could constitute a possible scenario of inverted phase diagrams in the so-called lower critical solution temperature transitions.
Resumo:
The energy and structure of dilute hard- and soft-sphere Bose gases are systematically studied in the framework of several many-body approaches, such as the variational correlated theory, the Bogoliubov model, and the uniform limit approximation, valid in the weak-interaction regime. When possible, the results are compared with the exact diffusion Monte Carlo ones. Jastrow-type correlation provides a good description of the systems, both hard- and soft-spheres, if the hypernetted chain energy functional is freely minimized and the resulting Euler equation is solved. The study of the soft-sphere potentials confirms the appearance of a dependence of the energy on the shape of the potential at gas paremeter values of x~0.001. For quantities other than the energy, such as the radial distribution functions and the momentum distributions, the dependence appears at any value of x. The occurrence of a maximum in the radial distribution function, in the momentum distribution, and in the excitation spectrum is a natural effect of the correlations when x increases. The asymptotic behaviors of the functions characterizing the structure of the systems are also investigated. The uniform limit approach is very easy to implement and provides a good description of the soft-sphere gas. Its reliability improves when the interaction weakens.
Resumo:
In this paper we consider diffusion of a passive substance C in a temporarily and spatially inhomogeneous two-dimensional medium. As a realization for the latter we choose a phase-separating medium consisting of two substances A and B, whose dynamics is determined by the Cahn-Hilliard equation. Assuming different diffusion coefficients of C in A and B, we find that the variance of the distribution function of the said substance grows less than linearly in time. We derive a simple identity for the variance using a probabilistic ansatz and are then able to identify the interface between A and B as the main cause for this nonlinear dependence. We argue that, finally, for very large times the here temporarily dependent diffusion "constant" goes like t-1/3 to a constant asymptotic value D¿. The latter is calculated approximately by employing the effective-medium approximation and by fitting the simulation data to the said time dependence.
Resumo:
The extended Gaussian ensemble (EGE) is introduced as a generalization of the canonical ensemble. This ensemble is a further extension of the Gaussian ensemble introduced by Hetherington [J. Low Temp. Phys. 66, 145 (1987)]. The statistical mechanical formalism is derived both from the analysis of the system attached to a finite reservoir and from the maximum statistical entropy principle. The probability of each microstate depends on two parameters ß and ¿ which allow one to fix, independently, the mean energy of the system and the energy fluctuations, respectively. We establish the Legendre transform structure for the generalized thermodynamic potential and propose a stability criterion. We also compare the EGE probability distribution with the q-exponential distribution. As an example, an application to a system with few independent spins is presented.
Resumo:
The energy and structure of a dilute hard-disks Bose gas are studied in the framework of a variational many-body approach based on a Jastrow correlated ground-state wave function. The asymptotic behaviors of the radial distribution function and the one-body density matrix are analyzed after solving the Euler equation obtained by a free minimization of the hypernetted chain energy functional. Our results show important deviations from those of the available low density expansions, already at gas parameter values x~0.001 . The condensate fraction in 2D is also computed and found generally lower than the 3D one at the same x.
Resumo:
Neutron diffraction has been used to study in situ the nanocrystallization process of Fe73.5Cu1Nb3Si22.5-xBx (x = 5, 9, and 12) amorphous alloys. Nanocrystallization results in a decrease of both the silicon content and the grain size of the Fe(Si) phase with increasing value of x. By comparing the radial distribution function peak areas with those predicted for ideal bcc and DO3 structure, it can be concluded that the ordering in DO3 Fe(Si) crystals increases with the silicon content.
Resumo:
We calculate the chemical potential ¿0 and the effective mass m*/m3 of one 3He impurity in liquid 4He. First a variational wave function including two- and three-particle dynamical correlations is adopted. Triplet correlations bring the computed values of ¿0 very close to the experimental results. The variational estimate of m*/m3 includes also backflow correlations between the 3He atom and the particles in the medium. Different approximations for the three-particle distribution function give almost the same values for m*/m3. The variational approach underestimates m*/m3 by ~10% at all of the considered densities. Correlated-basis perturbation theory is then used to improve the wave function to include backflow around the particles of the medium. The perturbative series built up with one-phonon states only is summed up to infinite order and gives results very close to the variational ones. All the perturbative diagrams with two independent phonons have then been summed to compute m*/m3. Their contribution depends to some extent on the form used for the three-particle distribution function. When the scaling approximation is adopted, a reasonable agreement with the experimental results is achieved.
Resumo:
We derive a simple closed analytical expression for the total entropy production along a single stochastic trajectory of a Brownian particle diffusing on a periodic potential under an external constant force. By numerical simulations we compute the probability distribution functions of the entropy and satisfactorily test many of the predictions based on Seiferts integral fluctuation theorem. The results presented for this simple model clearly illustrate the practical features and implications derived from such a result of nonequilibrium statistical mechanics.
Resumo:
We propose a generalization of the persistent random walk for dimensions greater than 1. Based on a cubic lattice, the model is suitable for an arbitrary dimension d. We study the continuum limit and obtain the equation satisfied by the probability density function for the position of the random walker. An exact solution is obtained for the projected motion along an axis. This solution, which is written in terms of the free-space solution of the one-dimensional telegraphers equation, may open a new way to address the problem of light propagation through thin slabs.