1000 resultados para ProC


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Despite the widespread use of stabilisation/solidification (S/S) techniques, the validation and the availability of predictive modelling of the behaviour of stabilised/solidified soils in the longer-term is very limited. The authors were involved in the assessment of the behaviour of a contaminated site in the UK treated with cement-based in-situ S/S over the first five years after treatment. In parallel, two experimental methods, namely elevated temperatures and combined elevated temperatures and accelerated carbonation, were used in the laboratory to model accelerated ageing of the site soil. A graphical technique, based on the Arrhenius equation, was then used to model the laboratory observations and the in-situ five-year behaviour. The paper presents the details of the two experimental methods used for the accelerated ageing of stabilised/solidified model site soil, the numerical predictive model and a comparison between the results of the two experimental techniques and with the site results. © 2005 Taylor & Francis Group.

Relevância:

10.00% 10.00%

Publicador:

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The first three reports in this series (Parts I, II and III) deals with binders and technologies used in stabilisation/ solidification (S/S) practice and research in the UK. This first part covers 'basic principles'while the second covers 'research' and the third 'applications'. The purpose of this work, which forms part of the Network STARNET on stabilisation/solidification treatment and remediation, is to identify the knowledge gaps and future research needs in this field. This paper describes the details and basic principles of available binders and technologies in the UK. The introduction in the report includes background on S/S, legislation aspects, overview of STARNET and its activities and details of commonly used binder selection criteria. The report is then divided into two main sections. The first covers binders and includes cement, blastfurnace slag, pulverised fuel ash, lime, natural and organophilic clays, bitumen, waste binders and concludes with proprietary binders. The second part details implementation processes for S/S treatment systems starting with ex-situ treatment systems, such as plant processing, direct mixing and in-drum processing and finishes with in-situ treatment processes, such as mechanical mixing and pressure mixing. © 2005 Taylor & Francis Group.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The first report of report series I, II and III entitled 'basic principles' presented details of the binders and technologies available and used in the stabilisation/ solidification (S/S) treatment of hazardous waste and contaminated land. This second report entitled 'research' presents an overview of the main research work, both experimental and numerical, carried out in the UK concentrating on the last decade or so but also highlighting earlier significant research work. The research work is reported under the headings of the individual binders and for each binder the work is presented in chronological order. In this work, most of the S/S materials are prepared by manual/mechanical mixing. The latter part of this report presents research work on S/S materials prepared using soil mixing with mixing augers. © 2005 Taylor & Francis Group.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Stabilisation, using a wide range of binders including wastes, is most effective for heavy metal soil contamination. Bioremediation techniques, including bioaugmentation to enhance soil microbial population, are most effective for organic contaminants in the soil. For mixed contaminant scenarios a combination of these two techniques is currently being investigated. An essential issue in this combined remediation system is the effect of microbial processes on the leachability of the heavy metals. This paper considers the use of zeolite and compost as binder additives combined with bioaugmentation treatments and their effect on copper leachability in a model contaminated soil. Different leaching test conditions are considered including both NRA and TCLP batch leaching tests as well as flow-through column tests. Two flow rates are applied in the flow-through tests and the two leaching tests are compared. Recommendations are given as to the effectiveness of this combined remediation technique in the immobilisation of copper. © 2005 Taylor & Francis Group.

Relevância:

10.00% 10.00%

Publicador:

Relevância:

10.00% 10.00%

Publicador:

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The role of geometrical confinement on collective cell migration has been recognized but has not been elucidated yet. Here, we show that the geometrical properties of the environment regulate the formation of collective cell migration patterns through cell-cell interactions. Using microfabrication techniques to allow epithelial cell sheets to migrate into strips whose width was varied from one up to several cell diameters, we identified the modes of collective migration in response to geometrical constraints. We observed that a decrease in the width of the strips is accompanied by an overall increase in the speed of the migrating cell sheet. Moreover, large-scale vortices over tens of cell lengths appeared in the wide strips whereas a contraction-elongation type of motion is observed in the narrow strips. Velocity fields and traction force signatures within the cellular population revealed migration modes with alternative pulling and/or pushing mechanisms that depend on extrinsic constraints. Force transmission through intercellular contacts plays a key role in this process because the disruption of cell-cell junctions abolishes directed collective migration and passive cell-cell adhesions tend to move the cells uniformly together independent of the geometry. Altogether, these findings not only demonstrate the existence of patterns of collective cell migration depending on external constraints but also provide a mechanical explanation for how large-scale interactions through cell-cell junctions can feed back to regulate the organization of migrating tissues.

Relevância:

10.00% 10.00%

Publicador:

Relevância:

10.00% 10.00%

Publicador:

Resumo:

One-cell-thick monolayers are the simplest tissues in multicellular organisms, yet they fulfill critical roles in development and normal physiology. In early development, embryonic morphogenesis results largely from monolayer rearrangement and deformation due to internally generated forces. Later, monolayers act as physical barriers separating the internal environment from the exterior and must withstand externally applied forces. Though resisting and generating mechanical forces is an essential part of monolayer function, simple experimental methods to characterize monolayer mechanical properties are lacking. Here, we describe a system for tensile testing of freely suspended cultured monolayers that enables the examination of their mechanical behavior at multi-, uni-, and subcellular scales. Using this system, we provide measurements of monolayer elasticity and show that this is two orders of magnitude larger than the elasticity of their isolated cellular components. Monolayers could withstand more than a doubling in length before failing through rupture of intercellular junctions. Measurement of stress at fracture enabled a first estimation of the average force needed to separate cells within truly mature monolayers, approximately ninefold larger than measured in pairs of isolated cells. As in single cells, monolayer mechanical properties were strongly dependent on the integrity of the actin cytoskeleton, myosin, and intercellular adhesions interfacing adjacent cells. High magnification imaging revealed that keratin filaments became progressively stretched during extension, suggesting they participate in monolayer mechanics. This multiscale study of monolayer response to deformation enabled by our device provides the first quantitative investigation of the link between monolayer biology and mechanics.