947 resultados para Preferential hyperacuity perimetry


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Tetrasomy, pentasomy, and hexasomy 8 (polysomy 8) are relatively rare compared to trisomy 8. Here we report on a series of 12 patients with acute myeloid leukemia (AML), myelodysplastic syndrome (MDS), or myeloproliferative disorder (MPD) associated with polysomy 8 as detected by conventional cytogenetics and fluorescence in situ hybridization (FISH). In an attempt to better characterize the clinical and hematological profile of this cytogenetic entity, our data were combined with those of 105 published patients. Tetrasomy 8 was the most common presentation of polysomy 8. In 60.7% of patients, polysomy 8 occurred as part of complex changes (16.2% with 11q23 rearrangements). No cryptic MLL rearrangements were found in cases in which polysomy 8 was the only karyotypic change. Our study demonstrates the existence of a polysomy 8 syndrome, which represents a subtype of AML, MDS, and MPD characterized by a high incidence of secondary diseases, myelomonocytic or monocytic involvement in AML and poor overall survival (6 months). Age significantly reduced median survival, but associated cytogenetic abnormalities did not modify it. Cytogenetic results further demonstrate an in vitro preferential growth of the cells with a high level of aneuploidy suggesting a selective advantage for polysomy 8 cells.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

PURPOSE: To determine whether the relative afferent pupillary defect (RAPD) remains constant over time in normal subjects. METHODS: Seventeen normal subjects were tested with infrared pupillography and automated perimetry in four sessions over 3 years. The changes in RAPD and visual field asymmetry between testing sessions were compared. RESULTS: The range of RAPD was 0.0 to 0.3 log unit, and the difference in the mean deviation between the eyes on automated static perimetry was 0 to 3 dB. Eight subjects repeatedly had an RAPD in the same eye. There was no correlation between the RAPD and the visual field asymmetry at the same visit. Changes in the magnitude of the RAPD between any two sessions were typically small (median, 0.08 log unit; 25th percentile, 0.04 log unit; 75th percentile, 0.15 log unit). CONCLUSIONS: Some normal subjects may show a persistent but small RAPD in the absence of detectable pathologic disease. Therefore, an isolated RAPD in the range of 0.3 log unit that is not associated with any other significant historical or clinical finding should probably be considered benign.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Developing a predictive understanding of subsurface flow and transport is complicated by the disparity of scales across which controlling hydrological properties and processes span. Conventional techniques for characterizing hydrogeological properties (such as pumping, slug, and flowmeter tests) typically rely on borehole access to the subsurface. Because their spatial extent is commonly limited to the vicinity near the wellbores, these methods often cannot provide sufficient information to describe key controls on subsurface flow and transport. The field of hydrogeophysics has evolved in recent years to explore the potential that geophysical methods hold for improving the quantification of subsurface properties and processes relevant for hydrological investigations. This chapter is intended to familiarize hydrogeologists and water-resource professionals with the state of the art as well as existing challenges associated with hydrogeophysics. We provide a review of the key components of hydrogeophysical studies, which include: geophysical methods commonly used for shallow subsurface characterization; petrophysical relationships used to link the geophysical properties to hydrological properties and state variables; and estimation or inversion methods used to integrate hydrological and geophysical measurements in a consistent manner. We demonstrate the use of these different geophysical methods, petrophysical relationships, and estimation approaches through several field-scale case studies. Among other applications, the case studies illustrate the use of hydrogeophysical approaches to quantify subsurface architecture that influence flow (such as hydrostratigraphy and preferential pathways); delineate anomalous subsurface fluid bodies (such as contaminant plumes); monitor hydrological processes (such as infiltration, freshwater-seawater interface dynamics, and flow through fractures); and estimate hydrological properties (such as hydraulic conductivity) and state variables (such as water content). The case studies have been chosen to illustrate how hydrogeophysical approaches can yield insights about complex subsurface hydrological processes, provide input that improves flow and transport predictions, and provide quantitative information over field-relevant spatial scales. The chapter concludes by describing existing hydrogeophysical challenges and associated research needs. In particular, we identify the area of quantitative watershed hydrogeophysics as a frontier area, where significant effort is required to advance the estimation of hydrological properties and processes (and their uncertainties) over spatial scales relevant to the management of water resources and contaminants.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

RESUME Durant les dernières années, les méthodes électriques ont souvent été utilisées pour l'investigation des structures de subsurface. L'imagerie électrique (Electrical Resistivity Tomography, ERT) est une technique de prospection non-invasive et spatialement intégrée. La méthode ERT a subi des améliorations significatives avec le développement de nouveaux algorithmes d'inversion et le perfectionnement des techniques d'acquisition. La technologie multicanale et les ordinateurs de dernière génération permettent la collecte et le traitement de données en quelques heures. Les domaines d'application sont nombreux et divers: géologie et hydrogéologie, génie civil et géotechnique, archéologie et études environnementales. En particulier, les méthodes électriques sont souvent employées dans l'étude hydrologique de la zone vadose. Le but de ce travail est le développement d'un système de monitorage 3D automatique, non- invasif, fiable, peu coûteux, basé sur une technique multicanale et approprié pour suivre les variations de résistivité électrique dans le sous-sol lors d'événements pluvieux. En raison des limitations techniques et afin d'éviter toute perturbation physique dans la subsurface, ce dispositif de mesure emploie une installation non-conventionnelle, où toutes les électrodes de courant sont placées au bord de la zone d'étude. Le dispositif le plus approprié pour suivre les variations verticales et latérales de la résistivité électrique à partir d'une installation permanente a été choisi à l'aide de modélisations numériques. Les résultats démontrent que le dispositif pôle-dipôle offre une meilleure résolution que le dispositif pôle-pôle et plus apte à détecter les variations latérales et verticales de la résistivité électrique, et cela malgré la configuration non-conventionnelle des électrodes. Pour tester l'efficacité du système proposé, des données de terrain ont été collectées sur un site d'étude expérimental. La technique de monitorage utilisée permet de suivre le processus d'infiltration 3D pendant des événements pluvieux. Une bonne corrélation est observée entre les résultats de modélisation numérique et les données de terrain, confirmant par ailleurs que le dispositif pôle-dipôle offre une meilleure résolution que le dispositif pôle-pôle. La nouvelle technique de monitorage 3D de résistivité électrique permet de caractériser les zones d'écoulement préférentiel et de caractériser le rôle de la lithologie et de la pédologie de manière quantitative dans les processus hydrologiques responsables d'écoulement de crue. ABSTRACT During the last years, electrical methods were often used for the investigation of subsurface structures. Electrical resistivity tomography (ERT) has been reported to be a useful non-invasive and spatially integrative prospecting technique. The ERT method provides significant improvements, with the developments of new inversion algorithms, and the increasing efficiency of data collection techniques. Multichannel technology and powerful computers allow collecting and processing resistivity data within few hours. Application domains are numerous and varied: geology and hydrogeology, civil engineering and geotechnics, archaeology and environmental studies. In particular, electrical methods are commonly used in hydrological studies of the vadose zone. The aim of this study was to develop a multichannel, automatic, non-invasive, reliable and inexpensive 3D monitoring system designed to follow electrical resistivity variations in soil during rainfall. Because of technical limitations and in order to not disturb the subsurface, the proposed measurement device uses a non-conventional electrode set-up, where all the current electrodes are located near the edges of the survey grid. Using numerical modelling, the most appropriate arrays were selected to detect vertical and lateral variations of the electrical resistivity in the framework of a permanent surveying installation system. The results show that a pole-dipole array has a better resolution than a pole-pole array and can successfully follow vertical and lateral resistivity variations despite the non-conventional electrode configuration used. Field data are then collected at a test site to assess the efficiency of the proposed monitoring technique. The system allows following the 3D infiltration processes during a rainfall event. A good correlation between the results of numerical modelling and field data results can be observed since the field pole-dipole data give a better resolution image than the pole-pole data. The new device and technique makes it possible to better characterize the zones of preferential flow and to quantify the role of lithology and pedology in flood- generating hydrological processes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In order to study the kinetics and composition of the polyclonal B-cell activation associated to malaria infection, antigen-specific and non-specific B-cell responses were evaluated in the spleens of mice infected with Plasmodium yoelii 17 XL or injected with lysed erythrocytes or plasma from P. yoelii infected mice or with P. falciparum culture supernatants. Spleen/body weigth ratio, numbers of nucleated spleen cells and Immunoglobulin-containing and Immunoglobulin-secreting cells increased progressively during the course of infection,in parallel to the parasitemia. A different pattern of kinetics was observed when anti-sheep red blood cell and anti-trinitrophenylated-sheep red blood cell plaque forming cells response were studied: maximum values were observed at early stages of infection, whereas the number of total Immunoglobulin-containing and Immunoglobulin-secreting cells were not yet altered. Conversely, at the end of infection, when these latter values reached their maximum, the anti-sheep red blood cell and anti-trinitrophenylated-sheep red blood cell specific responses were normal or even infranormal. In mice injected with Plasmodium-derived material, a higher increase in antigen-specific PFC was observed, as compared to the increase of Immunoglobulin-containing and Immunoglobulin-secreting cell numbers. This suggested a "preferential" (antigen-plus mitogen-induced) stimulation of antigen-specific cells rather than a generalized non-specific (mitogen-induced) triggering of B-lymphocytes. On the basis of these and previous results, it is suggested that polyclonal B-cell activation that takes place during the course of infection appears as a result of successive waves of antigen-specific B-cell activation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Åknes is an active complex large rockslide of approximately 30?40 Mm3 located within the Proterozoic gneisses of western Norway. The observed surface displacements indicate that this rockslide is divided into several blocks moving in different directions at velocities of between 3 and 10 cm year?1. Because of regional safety issues and economic interests this rockslide has been extensively monitored since 2004. The understanding of the deformation mechanism is crucial for the implementation of a viable monitoring system. Detailed field investigations and the analysis of a digital elevation model (DEM) indicate that the movements and the block geometry are controlled by the main schistosity (S1) in gneisses, folds, joints and regional faults. Such complex slope deformations use pre-existing structures, but also result in new failure surfaces and deformation zones, like preferential rupture in fold-hinge zones. Our interpretation provides a consistent conceptual three-dimensional (3D) model for the movements measured by various methods that is crucial for numerical stability modelling. In addition, this reinterpretation of the morphology confirms that in the past several rockslides occurred from the Åknes slope. They may be related to scars propagating along the vertical foliation in folds hinges. Finally, a model of the evolution of the Åknes slope is presented.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Résumé Streptococcus gordonii est une bactérie colonisatrice naturelle de la cavité buccale de l'homme. Bien que normalement commensale, elle peut causer des infections graves, telles que des bactériémies ou des endocardites infectieuses. La pénicilline étant un des traitements privilégiés dans de tels cas, l'augmentation rapide et globale des résistances à cet antibiotique devient inquiétante. L'étude de la physiologie et des bases génétiques de ces résistances chez S. gordonii s'avère donc importante. Les cibles moléculaires privilégiées de la pénicilline G et des β-lactames sont les penicilllin-binding proteins (PBPs). Ces enzymes associées à la membrane ont pour rôle de catalyser les réactions de transpeptidation et de transglycosylation, qui constituent les dernières étapes de la biosynthèse du peptidoglycan (PG). Elles sont définies comme classe A ou B selon leur capacité d'assurer soit les deux réactions, soit uniquement la transpeptidation. Les β-lactames inhibent le domaine transpeptidase de toutes les PBPs, entraînant l'inhibition de la synthèse du PG, l'inhibition de la croissance, et finalement la mort cellulaire. Chez les streptocoques, les PBPs sont aussi les premiers déterminants de la résistance à la pénicilline. De plus, elles sont impliquées dans la morphologie bactérienne, en raison de leur rôle crucial dans la formation du PG. Le but de ce travail était de caractériser les PBPs de S. gordonii et d'étudier leurs fonctions dans la vie végétative de la bactérie ainsi que durant le développement de la résistance à la pénicilline. Premièrement, des mutants auxquels il manque une ou deux PBP(s) ont été construits. Leur étude - au niveau physiologique, biochimique et morphologique - a montré le caractère essentiel ou dispensable de chaque protéine, ainsi que certaines de leurs fonctions potentielles. Deuxièmement, des mutants résistants à la pénicilline ont été générés. Leur caractérisation a montré l'importance des mutations dans les PBPs ainsi que dans d'autres gènes encore inconnus, de même que le rôle crucial des PBPs de classe A dans le développement de la résistance à la pénicilline. Des expériences supplémentaires sur des isolats résistants ont aussi prouvé que la résistance a un coût en terme de fitness, coût que S. gordonii parvient à compenser par des mécanismes d'adaptation. Finalement, les promoteurs des gènes des PBPs ont été déterminés et leur expression a été étudiée grâce au gène de luciférase. Il a ainsi été montré que la résistance à la pénicilline entraîne non seulement des altérations au niveau des protéines, mais aussi au niveau de la régulation des gènes. De plus, la pénicilline génère directement des modifications dans l'expression de PBPs spécifiques. Summary Streptococcus gordonii is a normal inhabitant of the human oral cavity and a pioneer colonizer of teeth. Although usually considered as a commensal, this organism can cause life-threatening infections such as bacteraemia or endocarditis. Since penicillin is one of the preferential treatments for such pathologies, the rapid and general increase of antibiotic resistance in the overall population becomes an issue. Thus, studying the physiologic and genetic bases of such a resistance in S. gordonii is of interest. The primary molecular targets of penicillin G and other β-lactams are the so called penicillin-binding proteins (PBPs). These are membrane-associated proteins that catalyze the last steps in peptidoglycan (PG) biosynthesis, namely transpeptidation and transglycosylation. Depending on their capacity to catalyze either reactions or only transpeptidation, they are considered as class A or class B PBPs, respectively. β-lactam antibiotics inhibit the transpeptidase domain of both of these classes of enzymes, resulting in inhibition of PG assembly, inhibition of bacterial growth, and ultimately leading to cell death. In streptococci, PBPs are also the primary determinants of penicillin-resistance. Moreover, because of their crucial role in PG formation, they are implicated in fundamental aspects of cell morphology. The goal of this work was thus to characterize S. gordonii PBPs and to explore their functions in terms of vegetative life and penicillin-resistance development. First, single and double PBP-inactivated mutants were generated and their effect on the bacterial physiology, cell wall biochemistry and ultrastructural morphology was assessed. This demonstrated the essentiality or dispensability of each protein for bacterial life. Second, penicillin-resistant mutants were generated by cyclic exposure to increasing concentrations of the drug. Characterization of these mutants pointed out the importance of both PBP and non-PBP mutations, as well as the crucial role of the class A PBPs in the development of penicillin-resistance. Further experiments on resistant isolates demonstrated the fitness cost of this resistance, but also the capacity of S. gordonii to adapt and regain the fitness of the wild-type. Finally, the promoters of PBP genes were determined and their expression was monitored using luciferase fusions. This showed that penicillin-resistance, in addition to modifications at the level of the protein, also triggered genetic alterations. Moreover, penicillin itself generated modifications in the expression of specific PBPs.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Conventional ultrasonography highly contributes to a non invasive diagnosis of HS schistosomiasis (Cerri et al., 1984). The introduction of Dopple allowed new advances in the knowledge of the portal dinamics of this disease (Taylor et al., 1985; Moriyasu et al., 1986). The aim of this paper was to analize the hemodinamic behavior of the portal vessels, considering caliper, maximum flow speed, direction of flow and preferential disposition of the collateral vessels. Thirty two patients with schistosomiasis mansoni with confirmed hepatosplenic form (HSSM), were analyzed. Fourteen patients with the intestinal form, have been analyzed as a control group. The results demonstrated that the maximum speed of the portal vein in the two groups has not been significantly diferent. Nevertheless, the diameter of the PV in the hepatosplenic group has been larger. The splenic vein presented speed and caliper larger than the superior mesenteric vein. The hepatic artery has been detectly in only 40% of the cases. The hepatic veins presented normal caliper and spectral pattern. The duplex proved to be an useful technich complementar and non-invasive, in the study of the HSSM.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Multisensory interactions are a fundamental feature of brain organization. Principles governing multisensory processing have been established by varying stimulus location, timing and efficacy independently. Determining whether and how such principles operate when stimuli vary dynamically in their perceived distance (as when looming/receding) provides an assay for synergy among the above principles and also means for linking multisensory interactions between rudimentary stimuli with higher-order signals used for communication and motor planning. Human participants indicated movement of looming or receding versus static stimuli that were visual, auditory, or multisensory combinations while 160-channel EEG was recorded. Multivariate EEG analyses and distributed source estimations were performed. Nonlinear interactions between looming signals were observed at early poststimulus latencies (∼75 ms) in analyses of voltage waveforms, global field power, and source estimations. These looming-specific interactions positively correlated with reaction time facilitation, providing direct links between neural and performance metrics of multisensory integration. Statistical analyses of source estimations identified looming-specific interactions within the right claustrum/insula extending inferiorly into the amygdala and also within the bilateral cuneus extending into the inferior and lateral occipital cortices. Multisensory effects common to all conditions, regardless of perceived distance and congruity, followed (∼115 ms) and manifested as faster transition between temporally stable brain networks (vs summed responses to unisensory conditions). We demonstrate the early-latency, synergistic interplay between existing principles of multisensory interactions. Such findings change the manner in which to model multisensory interactions at neural and behavioral/perceptual levels. We also provide neurophysiologic backing for the notion that looming signals receive preferential treatment during perception.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Humans can recognize categories of environmental sounds, including vocalizations produced by humans and animals and the sounds of man-made objects. Most neuroimaging investigations of environmental sound discrimination have studied subjects while consciously perceiving and often explicitly recognizing the stimuli. Consequently, it remains unclear to what extent auditory object processing occurs independently of task demands and consciousness. Studies in animal models have shown that environmental sound discrimination at a neural level persists even in anesthetized preparations, whereas data from anesthetized humans has thus far provided null results. Here, we studied comatose patients as a model of environmental sound discrimination capacities during unconsciousness. We included 19 comatose patients treated with therapeutic hypothermia (TH) during the first 2 days of coma, while recording nineteen-channel electroencephalography (EEG). At the level of each individual patient, we applied a decoding algorithm to quantify the differential EEG responses to human vs. animal vocalizations as well as to sounds of living vocalizations vs. man-made objects. Discrimination between vocalization types was accurate in 11 patients and discrimination between sounds from living and man-made sources in 10 patients. At the group level, the results were significant only for the comparison between vocalization types. These results lay the groundwork for disentangling truly preferential activations in response to auditory categories, and the contribution of awareness to auditory category discrimination.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Recent evidence suggests that lactate could be a preferential energy substrate transferred from astrocytes to neurons. This would imply the presence of specific transporters for lactate on both cell types. We have investigated the immunohistochemical localization of two monocarboxylate transporters, MCT1 and MCT2, in the adult mouse brain. Using specific antibodies raised against MCT1 and MCT2, we found strong immunoreactivity for each transporter in glia limitans, ependymocytes and several microvessel-like elements. In addition, small processes distributed throughout the cerebral parenchyma were immunolabeled for monocarboxylate transporters. Double immunofluorescent labeling and confocal microscopy examination of these small processes revealed no co-localization between glial fibrillary acidic protein and monocarboxylate transporters, although many glial fibrillary acidic protein-positive processes were often in close apposition to elements labeled for monocarboxylate transporters. In contrast, several elements expressing the S100beta protein, another astrocytic marker found to be located in distinct parts of the same cell when compared with glial fibrillary acidic protein, were also strongly immunoreactive for MCT1, suggesting expression of this transporter by astrocytes. In contrast, MCT2 was expressed in a small subset of microtubule-associated protein-2-positive elements, indicating a neuronal localization. In conclusion, these observations are consistent with the possibility that lactate, produced and released by astrocytes (via MCT1), could be taken up (via MCT2) and used by neurons as an energy substrate.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

BACKGROUND: There is in vitro and in vivo evidence that anticoagulants impair normal bone metabolism, and it is widely believed that this may impair fracture healing. However, there are only a few heterogeneous in vivo animal studies confirming this and the mechanisms are not fully understood. OBJECTIVE: To review the literature concerning the effects of anticoagulants on fracture healing, and to present current understanding of the mechanisms involved by reviewing in vivo studies of bone biology and in vitro studies of bone cells. METHODS: A systematic search of Medline and other databases was combined with manual searching of bibliographies of key papers to identify relevant studies in the English and German languages. CONCLUSION: There is strong evidence that warfarin, heparin and aspirin retard fracture healing. The preferential use of low molecular weight heparins is advocated to minimise this. Fondaparinux has not shown any impairment in vitro. Further studies of fondaparinux, the timing of anticoagulation therapy and the mechanisms of action of these agents are of paramount importance.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Experimental infections of the phytophagous Hemiptera Dysdercus peruvianus with different trypanosomatids were studied for up to 55 days by light microscopy while the course of infection with Leptomonas seymouri and the Leptomonas isolate 49/553G.O. was analyzed by electron microscopy. Rates of infection of D. peruvianus varied according to the infecting flagellate. The lower part of the midgut was found to be the preferential site of colonization where most flagellates were found isolated or arranged in clumps or rosettes. Specialized junctional structures with host cells were never observed. Flagellates could also be seen inside midgut cells within a parasitophorous vacuole. Infection of haemocoele and salivary glands was also observed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Six clinical isolates of influenza A viruses were examined for hemagglutinin receptor specificity and neuraminidase substrate specificity. All of the viral isolates minimally passaged in mammalian cells demonstrated preferential agglutination of human erythrocytes enzymatically modified to contain NeuAc alpha 2,6Gal sequences, with no agglutination of cells bearing NeuAc alpha 2,3Gal sequences. This finding is consistent with the hemagglutination receptor specificity previously demonstrated for laboratory strains of influenza A viruses. The neuraminidase substrate specificities of the clinical isolates examined were also identical to that described for the N2 neuraminidase of recent laboratory strains of human influenza viruses. The H3N2 viruses all displayed the ability to release sialic acid from both alpha 2, 3 and alpha 2, 6 linkages. In addition, two clinical isolates of H1N1 viruses also demonstrated this dual neuraminidase substrate specificity, a characteristic which has not been previously described for the N1 neuraminidase. These results demonstrate that complementary hemagglutinin and neuraminidase specificities are found in recent isolates of both H1N1 and H3N2 influenza viruses.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

An African oxalogenic tree, the iroko tree (Milicia excelsa), has the property to enhance carbonate precipitation in tropical oxisols, where such accumulations are not expected due to the acidic conditions in these types of soils. This uncommon process is linked to the oxalate-carbonate pathway, which increases soil pH through oxalate oxidation. In order to investigate the oxalate-carbonate pathway in the iroko system, fluxes of matter have been identified, described, and evaluated from field to microscopic scales. In the first centimeters of the soil profile, decaying of the organic matter allows the release of whewellite crystals, mainly due to the action of termites and saprophytic fungi. In addition, a concomitant flux of carbonate formed in wood tissues contributes to the carbonate flux and is identified as a direct consequence of wood feeding by termites. Nevertheless, calcite biomineralization of the tree is not a consequence of in situ oxalate consumption, but rather related to the oxalate oxidation inside the upper part of the soil. The consequence of this oxidation is the presence of carbonate ions in the soil solution pumped through the roots, leading to preferential mineralization of the roots and the trunk base. An ideal scenario for the iroko biomineralization and soil carbonate accumulation starts with oxalatization: as the iroko tree grows, the organic matter flux to the soil constitutes the litter, and an oxalate pool is formed on the forest ground. Then, wood rotting agents (mainly termites, saprophytic fungi, and bacteria) release significant amounts of oxalate crystals from decaying plant tissues. In addition, some of these agents are themselves producers of oxalate (e.g. fungi). Both processes contribute to a soil pool of "available" oxalate crystals. Oxalate consumption by oxalotrophic bacteria can then start. Carbonate and calcium ions present in the soil solution represent the end products of the oxalate-carbonate pathway. The solution is pumped through the roots, leading to carbonate precipitation. The main pools of carbon are clearly identified as the organic matter (the tree and its organic products), the oxalate crystals, and the various carbonate features. A functional model based on field observations and diagenetic investigations with δ13C signatures of the various compartments involved in the local carbon cycle is proposed. It suggests that the iroko ecosystem can act as a long-term carbon sink, as long as the calcium source is related to non-carbonate rocks. Consequently, this carbon sink, driven by the oxalate carbonate pathway around an iroko tree, constitutes a true carbon trapping ecosystem as defined by ecological theory.