962 resultados para Predicted Distribution Data
Resumo:
The discovery of protein variation is an important strategy in disease diagnosis within the biological sciences. The current benchmark for elucidating information from multiple biological variables is the so called “omics” disciplines of the biological sciences. Such variability is uncovered by implementation of multivariable data mining techniques which come under two primary categories, machine learning strategies and statistical based approaches. Typically proteomic studies can produce hundreds or thousands of variables, p, per observation, n, depending on the analytical platform or method employed to generate the data. Many classification methods are limited by an n≪p constraint, and as such, require pre-treatment to reduce the dimensionality prior to classification. Recently machine learning techniques have gained popularity in the field for their ability to successfully classify unknown samples. One limitation of such methods is the lack of a functional model allowing meaningful interpretation of results in terms of the features used for classification. This is a problem that might be solved using a statistical model-based approach where not only is the importance of the individual protein explicit, they are combined into a readily interpretable classification rule without relying on a black box approach. Here we incorporate statistical dimension reduction techniques Partial Least Squares (PLS) and Principal Components Analysis (PCA) followed by both statistical and machine learning classification methods, and compared them to a popular machine learning technique, Support Vector Machines (SVM). Both PLS and SVM demonstrate strong utility for proteomic classification problems.
Resumo:
Structural health monitoring (SHM) refers to the procedure used to assess the condition of structures so that their performance can be monitored and any damage can be detected early. Early detection of damage and appropriate retrofitting will aid in preventing failure of the structure and save money spent on maintenance or replacement and ensure the structure operates safely and efficiently during its whole intended life. Though visual inspection and other techniques such as vibration based ones are available for SHM of structures such as bridges, the use of acoustic emission (AE) technique is an attractive option and is increasing in use. AE waves are high frequency stress waves generated by rapid release of energy from localised sources within a material, such as crack initiation and growth. AE technique involves recording these waves by means of sensors attached on the surface and then analysing the signals to extract information about the nature of the source. High sensitivity to crack growth, ability to locate source, passive nature (no need to supply energy from outside, but energy from damage source itself is utilised) and possibility to perform real time monitoring (detecting crack as it occurs or grows) are some of the attractive features of AE technique. In spite of these advantages, challenges still exist in using AE technique for monitoring applications, especially in the area of analysis of recorded AE data, as large volumes of data are usually generated during monitoring. The need for effective data analysis can be linked with three main aims of monitoring: (a) accurately locating the source of damage; (b) identifying and discriminating signals from different sources of acoustic emission and (c) quantifying the level of damage of AE source for severity assessment. In AE technique, the location of the emission source is usually calculated using the times of arrival and velocities of the AE signals recorded by a number of sensors. But complications arise as AE waves can travel in a structure in a number of different modes that have different velocities and frequencies. Hence, to accurately locate a source it is necessary to identify the modes recorded by the sensors. This study has proposed and tested the use of time-frequency analysis tools such as short time Fourier transform to identify the modes and the use of the velocities of these modes to achieve very accurate results. Further, this study has explored the possibility of reducing the number of sensors needed for data capture by using the velocities of modes captured by a single sensor for source localization. A major problem in practical use of AE technique is the presence of sources of AE other than crack related, such as rubbing and impacts between different components of a structure. These spurious AE signals often mask the signals from the crack activity; hence discrimination of signals to identify the sources is very important. This work developed a model that uses different signal processing tools such as cross-correlation, magnitude squared coherence and energy distribution in different frequency bands as well as modal analysis (comparing amplitudes of identified modes) for accurately differentiating signals from different simulated AE sources. Quantification tools to assess the severity of the damage sources are highly desirable in practical applications. Though different damage quantification methods have been proposed in AE technique, not all have achieved universal approval or have been approved as suitable for all situations. The b-value analysis, which involves the study of distribution of amplitudes of AE signals, and its modified form (known as improved b-value analysis), was investigated for suitability for damage quantification purposes in ductile materials such as steel. This was found to give encouraging results for analysis of data from laboratory, thereby extending the possibility of its use for real life structures. By addressing these primary issues, it is believed that this thesis has helped improve the effectiveness of AE technique for structural health monitoring of civil infrastructures such as bridges.
Resumo:
Barmah Forest virus (BFV) disease is one of the most widespread mosquito-borne diseases in Australia. The number of outbreaks and the incidence rate of BFV in Australia have attracted growing concerns about the spatio-temporal complexity and underlying risk factors of BFV disease. A large number of notifications has been recorded continuously in Queensland since 1992. Yet, little is known about the spatial and temporal characteristics of the disease. I aim to use notification data to better understand the effects of climatic, demographic, socio-economic and ecological risk factors on the spatial epidemiology of BFV disease transmission, develop predictive risk models and forecast future disease risks under climate change scenarios. Computerised data files of daily notifications of BFV disease and climatic variables in Queensland during 1992-2008 were obtained from Queensland Health and Australian Bureau of Meteorology, respectively. Projections on climate data for years 2025, 2050 and 2100 were obtained from Council of Scientific Industrial Research Organisation. Data on socio-economic, demographic and ecological factors were also obtained from relevant government departments as follows: 1) socio-economic and demographic data from Australian Bureau of Statistics; 2) wetlands data from Department of Environment and Resource Management and 3) tidal readings from Queensland Department of Transport and Main roads. Disease notifications were geocoded and spatial and temporal patterns of disease were investigated using geostatistics. Visualisation of BFV disease incidence rates through mapping reveals the presence of substantial spatio-temporal variation at statistical local areas (SLA) over time. Results reveal high incidence rates of BFV disease along coastal areas compared to the whole area of Queensland. A Mantel-Haenszel Chi-square analysis for trend reveals a statistically significant relationship between BFV disease incidence rates and age groups (ƒÓ2 = 7587, p<0.01). Semi-variogram analysis and smoothed maps created from interpolation techniques indicate that the pattern of spatial autocorrelation was not homogeneous across the state. A cluster analysis was used to detect the hot spots/clusters of BFV disease at a SLA level. Most likely spatial and space-time clusters are detected at the same locations across coastal Queensland (p<0.05). The study demonstrates heterogeneity of disease risk at a SLA level and reveals the spatial and temporal clustering of BFV disease in Queensland. Discriminant analysis was employed to establish a link between wetland classes, climate zones and BFV disease. This is because the importance of wetlands in the transmission of BFV disease remains unclear. The multivariable discriminant modelling analyses demonstrate that wetland types of saline 1, riverine and saline tidal influence were the most significant risk factors for BFV disease in all climate and buffer zones, while lacustrine, palustrine, estuarine and saline 2 and saline 3 wetlands were less important. The model accuracies were 76%, 98% and 100% for BFV risk in subtropical, tropical and temperate climate zones, respectively. This study demonstrates that BFV disease risk varied with wetland class and climate zone. The study suggests that wetlands may act as potential breeding habitats for BFV vectors. Multivariable spatial regression models were applied to assess the impact of spatial climatic, socio-economic and tidal factors on the BFV disease in Queensland. Spatial regression models were developed to account for spatial effects. Spatial regression models generated superior estimates over a traditional regression model. In the spatial regression models, BFV disease incidence shows an inverse relationship with minimum temperature, low tide and distance to coast, and positive relationship with rainfall in coastal areas whereas in whole Queensland the disease shows an inverse relationship with minimum temperature and high tide and positive relationship with rainfall. This study determines the most significant spatial risk factors for BFV disease across Queensland. Empirical models were developed to forecast the future risk of BFV disease outbreaks in coastal Queensland using existing climatic, socio-economic and tidal conditions under climate change scenarios. Logistic regression models were developed using BFV disease outbreak data for the existing period (2000-2008). The most parsimonious model had high sensitivity, specificity and accuracy and this model was used to estimate and forecast BFV disease outbreaks for years 2025, 2050 and 2100 under climate change scenarios for Australia. Important contributions arising from this research are that: (i) it is innovative to identify high-risk coastal areas by creating buffers based on grid-centroid and the use of fine-grained spatial units, i.e., mesh blocks; (ii) a spatial regression method was used to account for spatial dependence and heterogeneity of data in the study area; (iii) it determined a range of potential spatial risk factors for BFV disease; and (iv) it predicted the future risk of BFV disease outbreaks under climate change scenarios in Queensland, Australia. In conclusion, the thesis demonstrates that the distribution of BFV disease exhibits a distinct spatial and temporal variation. Such variation is influenced by a range of spatial risk factors including climatic, demographic, socio-economic, ecological and tidal variables. The thesis demonstrates that spatial regression method can be applied to better understand the transmission dynamics of BFV disease and its risk factors. The research findings show that disease notification data can be integrated with multi-factorial risk factor data to develop build-up models and forecast future potential disease risks under climate change scenarios. This thesis may have implications in BFV disease control and prevention programs in Queensland.
Resumo:
Fruit drying is a process of removing moisture to preserve fruits by preventing microbial spoilage. It increases shelf life, reduce weight and volume thus minimize packing, storage, and transportation cost and enable storage of food under ambient environment. But, it is a complex process which involves combination of heat and mass transfer and physical property change and shrinkage of the material. In this background, the aim of this paper to develop a mathematical model to simulate coupled heat and mass transfer during convective drying of fruit. This model can be used predict the temperature and moisture distribution inside the fruits during drying. Two models were developed considering shrinkage dependent and temperature dependent moisture diffusivity and the results were compared. The governing equations of heat and mass transfer are solved and a parametric study has been done with Comsol Multiphysics 4.3. The predicted results were validated with experimental data.
Resumo:
Secure communications in wireless sensor networks operating under adversarial conditions require providing pairwise (symmetric) keys to sensor nodes. In large scale deployment scenarios, there is no prior knowledge of post deployment network configuration since nodes may be randomly scattered over a hostile territory. Thus, shared keys must be distributed before deployment to provide each node a key-chain. For large sensor networks it is infeasible to store a unique key for all other nodes in the key-chain of a sensor node. Consequently, for secure communication either two nodes have a key in common in their key-chains and they have a wireless link between them, or there is a path, called key-path, among these two nodes where each pair of neighboring nodes on this path have a key in common. Length of the key-path is the key factor for efficiency of the design. This paper presents novel deterministic and hybrid approaches based on Combinatorial Design for deciding how many and which keys to assign to each key-chain before the sensor network deployment. In particular, Balanced Incomplete Block Designs (BIBD) and Generalized Quadrangles (GQ) are mapped to obtain efficient key distribution schemes. Performance and security properties of the proposed schemes are studied both analytically and computationally. Comparison to related work shows that the combinatorial approach produces better connectivity with smaller key-chain sizes.
Resumo:
The Geothermal industry in Australia and Queensland is in its infancy and for hot dry rock (HDR) geothermal energy, it is very much in the target identification and resource definition stages. As a key effort to assist the geothermal industry and exploration for HDR in Queensland, we are developing a comprehensive and new integrated geochemical and geochronological database on igneous rocks. To date, around 18,000 igneous rocks have been analysed across Queensland for chemical and/or age information. However, these data currently reside in a number of disparate datasets (e.g., Ozchron, Champion et al., 2007, Geological Survey of Queensland, journal publications, and unpublished university theses). The goal of this project is to collate and integrate these data on Queensland igneous rocks to improve our understanding of high heat producing granites in Queensland, in terms of their distribution (particularly in the subsurface), dimensions, ages, and controlling factors in their genesis.
Resumo:
Big data is big news in almost every sector including crisis communication. However, not everyone has access to big data and even if we have access to big data, we often do not have necessary tools to analyze and cross reference such a large data set. Therefore this paper looks at patterns in small data sets that we have ability to collect with our current tools to understand if we can find actionable information from what we already have. We have analyzed 164390 tweets collected during 2011 earthquake to find out what type of location specific information people mention in their tweet and when do they talk about that. Based on our analysis we find that even a small data set that has far less data than a big data set can be useful to find priority disaster specific areas quickly.
Resumo:
Carbon fibre reinforced polymer (CFRP) sheets have many outstanding properties such as high strength, high elastic modulus, light weight and good durability which are made them a suitable alternative for steel in strengthening work. This paper describe the ultimate load carrying capacity of steel hollow sections at effective bond length in terms of its cross sectional area and the stress distribution within bond region for different layers CFRP. It was found that depending on their size and orientation of uni- directional CFRP layers, the ultimate tensile load was different. Along with these tests, non linear finite element analysis was also performed to validate the ultimate load carrying capacity depending on their cross sections. The predicted ultimate loads from FE analysis are found very close to the laboratory test results. The validated model has been used to determine the stress distribution at bond joint for different orientation of CFRP. This research shows the effect of stress distribution and suitable wrapping layer to be used for the strengthening of steel hollow sections in tension.
Resumo:
Objective: Menopause is the consequence of exhaustion of the ovarian follicular pool. AMH, an indirect hormonal marker of ovarian reserve, has been recently proposed as a predictor for age at menopause. Since BMI and smoking status are relevant independent factors associated with age at menopause we evaluated whether a model including all three of these variables could improve AMH-based prediction of age at menopause. Methods: In the present cohort study, participants were 375 eumenorrheic women aged 19–44 years and a sample of 2,635 Italian menopausal women. AMH values were obtained from the eumenorrheic women. Results: Regression analysis of the AMH data showed that a quadratic function of age provided a good description of these data plotted on a logarithmic scale, with a distribution of residual deviates that was not normal but showed significant leftskewness. Under the hypothesis that menopause can be predicted by AMH dropping below a critical threshold, a model predicting menopausal age was constructed from the AMH regression model and applied to the data on menopause. With the AMH threshold dependent on the covariates BMI and smoking status, the effects of these covariates were shown to be highly significant. Conclusions: In the present study we confirmed the good level of conformity between the distributions of observed and AMH-predicted ages at menopause, and showed that using BMI and smoking status as additional variables improves AMH-based prediction of age at menopause.
Resumo:
Context: Anti-Müllerian hormone (AMH) concentration reflects ovarian aging and is argued to be a useful predictor of age at menopause (AMP). It is hypothesized that AMH falling below a critical threshold corresponds to follicle depletion, which results in menopause. With this threshold, theoretical predictions of AMP can be made. Comparisons of such predictions with observed AMP from population studies support the role for AMH as a forecaster of menopause. Objective: The objective of the study was to investigate whether previous relationships between AMH and AMP are valid using a much larger data set. Setting: AMH was measured in 27 563 women attending fertility clinics. Study Design: From these data a model of age-related AMH change was constructed using a robust regression analysis. Data on AMP from subfertile women were obtained from the population-based Prospect-European Prospective Investigation into Cancer and Nutrition (Prospect- EPIC) cohort (n � 2249). By constructing a probability distribution of age at which AMH falls below a critical threshold and fitting this to Prospect-EPIC menopausal age data using maximum likelihood, such a threshold was estimated. Main Outcome: The main outcome was conformity between observed and predicted AMP. Results: To get a distribution of AMH-predicted AMP that fit the Prospect-EPIC data, we found the critical AMH threshold should vary among women in such a way that women with low age-specific AMH would have lower thresholds, whereas women with high age-specific AMH would have higher thresholds (mean 0.075 ng/mL; interquartile range 0.038–0.15 ng/mL). Such a varying AMH threshold for menopause is a novel and biologically plausible finding. AMH became undetectable (�0.2 ng/mL) approximately 5 years before the occurrence of menopause, in line with a previous report. Conclusions: The conformity of the observed and predicted distributions of AMP supports the hypothesis that declining population averages of AMH are associated with menopause, making AMH an excellent candidate biomarker for AMP prediction. Further research will help establish the accuracy of AMH levels to predict AMP within individuals.
Resumo:
It is commonly assumed that rates of accumulation of organic-rich strata have varied through geologic time with some periods that were particularly favorable for accumulation of petroleum source rocks or coals. A rigorous analysis of the validity of such an assumption requires consideration of the basic fact that although sedimentary rocks have been lost through geologic time to erosion and metamorphism. Consequently, their present-day global abundance decreases with their geologic age. Measurements of the global abundance of coal-bearing strata suggest that conditions for coal accumulation were exceptionally favorable during the late Carboniferous. Strata of this age constitute 21% of the world's coal-bearing strata. Global rates of coal accumulation appear to have been relatively constant since the end of the Carboniferous, with the exception of the Triassic which contains only 1.75% of the world's coal-bearing strata. Estimation of the global amount of discovered oil by age of the source rock show that 58% of the world's oil has been sourced from Cretaceous or younger strata and 99% from Silurian or younger strata. Although most geologic periods were favourable for oil source-rock accumulation the mid-Permian to mid-Jurassic appears to have been particularly unfavourable accounting for less than 2% of the world's oil. Estimation of the global amount of discovered natural gas by age of the source rock show that 48% of the world's oil has been sourced from Cretaceous or younger strata and 99% from Silurian or younger strata. The Silurian and Late Carboniferous were particularly favourable for gas source-rock accumulation respectively accounting for 12.9% and 6.9% of the world's gas. By contrast, Permian and Triassic source rocks account for only 1.7% of the world's natural gas. Rather than invoking global climatic or oceanic events to explain the relative abundance of organic rich sediments through time, examination of the data suggests the more critical control is tectonic. The majority of coals are associated with foreland basins and the majority of oil-prone source rocks are associated with rifting. The relative abundance of these types of basin through time determines the abundance and location of coals and petroleum source rocks.
Resumo:
As the world’s population is growing, so is the demand for agricultural products. However, natural nitrogen (N) fixation and phosphorus (P) availability cannot sustain the rising agricultural production, thus, the application of N and P fertilisers as additional nutrient sources is common. It is those anthropogenic activities that can contribute high amounts of organic and inorganic nutrients to both surface and groundwaters resulting in degradation of water quality and a possible reduction of aquatic life. In addition, runoff and sewage from urban and residential areas can contain high amounts of inorganic and organic nutrients which may also affect water quality. For example, blooms of the cyanobacterium Lyngbya majuscula along the coastline of southeast Queensland are an indicator of at least short term decreases of water quality. Although Australian catchments, including those with intensive forms of land use, show in general a low export of nutrients compared to North American and European catchments, certain land use practices may still have a detrimental effect on the coastal environment. Numerous studies are reported on nutrient cycling and associated processes on a catchment scale in the Northern Hemisphere. Comparable studies in Australia, in particular in subtropical regions are, however, limited and there is a paucity in the data, in particular for inorganic and organic forms of nitrogen and phosphorus; these nutrients are important limiting factors in surface waters to promote algal blooms. Therefore, the monitoring of N and P and understanding the sources and pathways of these nutrients within a catchment is important in coastal zone management. Although Australia is the driest continent, in subtropical regions such as southeast Queensland, rainfall patterns have a significant effect on runoff and thus the nutrient cycle at a catchment scale. Increasingly, these rainfall patterns are becoming variable. The monitoring of these climatic conditions and the hydrological response of agricultural catchments is therefore also important to reduce the anthropogenic effects on surface and groundwater quality. This study consists of an integrated hydrological–hydrochemical approach that assesses N and P in an environment with multiple land uses. The main aim is to determine the nutrient cycle within a representative coastal catchment in southeast Queensland, the Elimbah Creek catchment. In particular, the investigation confirms the influence associated with forestry and agriculture on N and P forms, sources, distribution and fate in the surface and groundwaters of this subtropical setting. In addition, the study determines whether N and P are subject to transport into the adjacent estuary and thus into the marine environment; also considered is the effect of local topography, soils and geology on N and P sources and distribution. The thesis is structured on four components individually reported. The first paper determines the controls of catchment settings and processes on stream water, riverbank sediment, and shallow groundwater N and P concentrations, in particular during the extended dry conditions that were encountered during the study. Temporal and spatial factors such as seasonal changes, soil character, land use and catchment morphology are considered as well as their effect on controls over distributions of N and P in surface waters and associated groundwater. A total number of 30 surface and 13 shallow groundwater sampling sites were established throughout the catchment to represent dominant soil types and the land use upstream of each sampling location. Sampling comprises five rounds and was conducted over one year between October 2008 and November 2009. Surface water and groundwater samples were analysed for all major dissolved inorganic forms of N and for total N. Phosphorus was determined in the form of dissolved reactive P (predominantly orthophosphate) and total P. In addition, extracts of stream bank sediments and soil grab samples were analysed for these N and P species. Findings show that major storm events, in particular after long periods of drought conditions, are the driving force of N cycling. This is expressed by higher inorganic N concentrations in the agricultural subcatchment compared to the forested subcatchment. Nitrate N is the dominant inorganic form of N in both the surface and groundwaters and values are significantly higher in the groundwaters. Concentrations in the surface water range from 0.03 to 0.34 mg N L..1; organic N concentrations are considerably higher (average range: 0.33 to 0.85 mg N L..1), in particular in the forested subcatchment. Average NO3-N in the groundwater has a range of 0.39 to 2.08 mg N L..1, and organic N averages between 0.07 and 0.3 mg N L..1. The stream bank sediments are dominated by organic N (range: 0.53 to 0.65 mg N L..1), and the dominant inorganic form of N is NH4-N with values ranging between 0.38 and 0.41 mg N L..1. Topography and soils, however, were not to have a significant effect on N and P concentrations in waters. Detectable phosphorus in the surface and groundwaters of the catchment is limited to several locations typically in the proximity of areas with intensive animal use; in soil and sediments, P is negligible. In the second paper, the stable isotopes of N (14N/15N) and H2O (16O/18O and 2H/H) in surface and groundwaters are used to identify sources of dissolved inorganic and organic N in these waters, and to determine their pathways within the catchment; specific emphasis is placed on the relation of forestry and agriculture. Forestry is predominantly concentrated in the northern subcatchment (Beerburrum Creek) while agriculture is mainly found in the southern subcatchment (Six Mile Creek). Results show that agriculture (horticulture, crops, grazing) is the main source of inorganic N in the surface waters of the agricultural subcatchment, and their isotopic signature shows a close link to evaporation processes that may occur during water storage in farm dams that are used for irrigation. Groundwaters are subject to denitrification processes that may result in reduced dissolved inorganic N concentrations. Soil organic matter delivers most of the inorganic N to the surface water in the forested subcatchment. Here, precipitation and subsequently runoff is the main source of the surface waters. Groundwater in this area is affected by agricultural processes. The findings also show that the catchment can attenuate the effects of anthropogenic land use on surface water quality. Riparian strips of natural remnant vegetation, commonly 50 to 100 m in width, act as buffer zones along the drainage lines in the catchment and remove inorganic N from the soil water before it enters the creek. These riparian buffer zones are common in most agricultural catchments of southeast Queensland and are indicated to reduce the impact of agriculture on stream water quality and subsequently on the estuary and marine environments. This reduction is expressed by a significant decrease in DIN concentrations from 1.6 mg N L..1 to 0.09 mg N L..1, and a decrease in the �15N signatures from upstream surface water locations downstream to the outlet of the agricultural subcatchment. Further testing is, however, necessary to confirm these processes. Most importantly, the amount of N that is transported to the adjacent estuary is shown to be negligible. The third and fourth components of the thesis use a hydrological catchment model approach to determine the water balance of the Elimbah Creek catchment. The model is then used to simulate the effects of land use on the water balance and nutrient loads of the study area. The tool that is used is the internationally widely applied Soil and Water Assessment Tool (SWAT). Knowledge about the water cycle of a catchment is imperative in nutrient studies as processes such as rainfall, surface runoff, soil infiltration and routing of water through the drainage system are the driving forces of the catchment nutrient cycle. Long-term information about discharge volumes of the creeks and rivers do, however, not exist for a number of agricultural catchments in southeast Queensland, and such information is necessary to calibrate and validate numerical models. Therefore, a two-step modelling approach was used to calibrate and validate parameters values from a near-by gauged reference catchment as starting values for the ungauged Elimbah Creek catchment. Transposing monthly calibrated and validated parameter values from the reference catchment to the ungauged catchment significantly improved model performance showing that the hydrological model of the catchment of interest is a strong predictor of the water water balance. The model efficiency coefficient EF shows that 94% of the simulated discharge matches the observed flow whereas only 54% of the observed streamflow was simulated by the SWAT model prior to using the validated values from the reference catchment. In addition, the hydrological model confirmed that total surface runoff contributes the majority of flow to the surface water in the catchment (65%). Only a small proportion of the water in the creek is contributed by total base-flow (35%). This finding supports the results of the stable isotopes 16O/18O and 2H/H, which show the main source of water in the creeks is either from local precipitation or irrigation waters delivered by surface runoff; a contribution from the groundwater (baseflow) to the creeks could not be identified using 16O/18O and 2H/H. In addition, the SWAT model calculated that around 68% of the rainfall occurring in the catchment is lost through evapotranspiration reflecting the prevailing long-term drought conditions that were observed prior and during the study. Stream discharge from the forested subcatchment was an order of magnitude lower than discharge from the agricultural Six Mile Creek subcatchment. A change in land use from forestry to agriculture did not significantly change the catchment water balance, however, nutrient loads increased considerably. Conversely, a simulated change from agriculture to forestry resulted in a significant decrease of nitrogen loads. The findings of the thesis and the approach used are shown to be of value to catchment water quality monitoring on a wider scale, in particular the implications of mixed land use on nutrient forms, distributions and concentrations. The study confirms that in the tropics and subtropics the water balance is affected by extended dry periods and seasonal rainfall with intensive storm events. In particular, the comprehensive data set of inorganic and organic N and P forms in the surface and groundwaters of this subtropical setting acquired during the one year sampling program may be used in similar catchment hydrological studies where these detailed information is missing. Also, the study concludes that riparian buffer zones along the catchment drainage system attenuate the transport of nitrogen from agricultural sources in the surface water. Concentrations of N decreased from upstream to downstream locations and were negligible at the outlet of the catchment.
Resumo:
Human immunodeficiency virus (HIV) that leads to acquired immune deficiency syndrome (AIDs) reduces immune function, resulting in opportunistic infections and later death. Use of antiretroviral therapy (ART) increases chances of survival, however, with some concerns regarding fat re-distribution (lipodystrophy) which may encompass subcutaneous fat loss (lipoatrophy) and/or fat accumulation (lipohypertrophy), in the same individual. This problem has been linked to Antiretroviral drugs (ARVs), majorly, in the class of protease inhibitors (PIs), in addition to older age and being female. An additional concern is that the problem exists together with the metabolic syndrome, even when nutritional status/ body composition, and lipodystrophy/metabolic syndrome are unclear in Uganda where the use of ARVs is on the increase. In line with the literature, the overall aim of the study was to assess physical characteristics of HIV-infected patients using a comprehensive anthropometric protocol and to predict body composition based on these measurements and other standardised techniques. The other aim was to establish the existence of lipodystrophy, the metabolic syndrome, andassociated risk factors. Thus, three studies were conducted on 211 (88 ART-naïve) HIV-infected, 15-49 year-old women, using a cross-sectional approach, together with a qualitative study of secondary information on patient HIV and medication status. In addition, face-to-face interviews were used to extract information concerning morphological experiences and life style. The study revealed that participants were on average 34.1±7.65 years old, had lived 4.63±4.78 years with HIV infection and had spent 2.8±1.9 years receiving ARVs. Only 8.1% of participants were receiving PIs and 26% of those receiving ART had ever changed drug regimen, 15.5% of whom changed drugs due to lipodystrophy. Study 1 hypothesised that the mean nutritional status and predicted percent body fat values of study participants was within acceptable ranges; different for participants receiving ARVs and the HIV-infected ART-naïve participants and that percent body fat estimated by anthropometric measures (BMI and skinfold thickness) and the BIA technique was not different from that predicted by the deuterium oxide dilution technique. Using the Body Mass Index (BMI), 7.1% of patients were underweight (<18.5 kg/m2) and 46.4% were overweight/obese (≥25.0 kg/m2). Based on waist circumference (WC), approximately 40% of the cohort was characterized as centrally obese. Moreover, the deuterium dilution technique showed that there was no between-group difference in the total body water (TBW), fat mass (FM) and fat-free mass (FFM). However, the technique was the only approach to predict a between-group difference in percent body fat (p = .045), but, with a very small effect (0.021). Older age (β = 0.430, se = 0.089, p = .000), time spent receiving ARVs (β = 0.972, se = 0.089, p = .006), time with the infection (β = 0.551, se = 0.089, p = .000) and receiving ARVs (β = 2.940, se = 1.441, p = .043) were independently associated with percent body fat. Older age was the greatest single predictor of body fat. Furthermore, BMI gave better information than weight alone could; in that, mean percentage body fat per unit BMI (N = 192) was significantly higher in patients receiving treatment (1.11±0.31) vs. the exposed group (0.99±0.38, p = .025). For the assessment of obesity, percent fat measures did not greatly alter the accuracy of BMI as a measure for classifying individuals into the broad categories of underweight, normal and overweight. Briefly, Study 1 revealed that there were more overweight/obese participants than in the general Ugandan population, the problem was associated with ART status and that BMI broader classification categories were maintained when compared with the gold standard technique. Study 2 hypothesized that the presence of lipodystrophy in participants receiving ARVs was not different from that of HIV-infected ART-naïve participants. Results showed that 112 (53.1%) patients had experienced at least one morphological alteration including lipohypertrophy (7.6%), lipoatrophy (10.9%), and mixed alterations (34.6%). The majority of these subjects (90%) were receiving ARVs; in fact, all patients receiving PIs reported lipodystrophy. Period spent receiving ARVs (t209 = 6.739, p = .000), being on ART (χ2 = 94.482, p = .000), receiving PIs (Fisher’s exact χ2 = 113.591, p = .000), recent T4 count (CD4 counts) (t207 = 3.694, p = .000), time with HIV (t125 = 1.915, p = .045), as well as older age (t209 = 2.013, p = .045) were independently associated with lipodystrophy. Receiving ARVs was the greatest predictor of lipodystrophy (p = .000). In other analysis, aside from skinfolds at the subscapular (p = .004), there were no differences with the rest of the skinfold sites and the circumferences between participants with lipodystrophy and those without the problem. Similarly, there was no difference in Waist: Hip ratio (WHR) (p = .186) and Waist: Height ratio (WHtR) (p = .257) among participants with lipodystrophy and those without the problem. Further examination showed that none of the 4.1% patients receiving stavudine (d4T) did experience lipoatrophy. However, 17.9% of patients receiving EFV, a non-nucleoside reverse transcriptase inhibitor (NNRTI) had lipoatrophy. Study 2 findings showed that presence of lipodystrophy in participants receiving ARVs was in fact far higher than that of HIV-infected ART-naïve participants. A final hypothesis was that the prevalence of the metabolic syndrome in participants receiving ARVs was not different from that of HIV-infected ART-naïve participants. Moreover, data showed that many patients (69.2%) lived with at least one feature of the metabolic syndrome based on International Diabetic Federation (IDF, 2006) definition. However, there was no single anthropometric predictor of components of the syndrome, thus, the best anthropometric predictor varied as the component varied. The metabolic syndrome was diagnosed in 15.2% of the subjects, lower than commonly reported in this population, and was similar between the medicated and the exposed groups (χ 21 = 0.018, p = .893). Moreover, the syndrome was associated with older age (p = .031) and percent body fat (p = .012). In addition, participants with the syndrome were heavier according to BMI (p = .000), larger at the waist (p = .000) and abdomen (p = .000), and were at central obesity risk even when hip circumference (p = .000) and height (p = .000) were accounted for. In spite of those associations, results showed that the period with disease (p = .13), CD4 counts (p = .836), receiving ART (p = .442) or PIs (p = .678) were not associated with the metabolic syndrome. While the prevalence of the syndrome was highest amongst the older, larger and fatter participants, WC was the best predictor of the metabolic syndrome (p = .001). Another novel finding was that participants with the metabolic syndrome had greater arm muscle circumference (AMC) (p = .000) and arm muscle area (AMA) (p = .000), but the former was most influential. Accordingly, the easiest and cheapest indicator to assess risk in this study sample was WC should routine laboratory services not be feasible. In addition, the final study illustrated that the prevalence of the metabolic syndrome in participants receiving ARVs was not different from that of HIV-infected ART-naïve participants.
Resumo:
Background Recent initiatives within an Australia public healthcare service have seen a focus on increasing the research capacity of their workforce. One of the key initiatives involves encouraging clinicians to be research generators rather than solely research consumers. As a result, baseline data of current research capacity are essential to determine whether initiatives encouraging clinicians to undertake research have been effective. Speech pathologists have previously been shown to be interested in conducting research within their clinical role; therefore they are well positioned to benefit from such initiatives. The present study examined the current research interest, confidence and experience of speech language pathologists (SLPs) in a public healthcare workforce, as well as factors that predicted clinician research engagement. Methods Data were collected via an online survey emailed to an estimated 330 SLPs working within Queensland, Australia. The survey consisted of 30 questions relating to current levels of interest, confidence and experience performing specific research tasks, as well as how frequently SLPs had performed these tasks in the last 5 years. Results Although 158 SLPs responded to the survey, complete data were available for only 137. Respondents were more confident and experienced with basic research tasks (e.g., finding literature) and less confident and experienced with complex research tasks (e.g., analysing and interpreting results, publishing results). For most tasks, SLPs displayed higher levels of interest in the task than confidence and experience. Research engagement was predicted by highest qualification obtained, current job classification level and overall interest in research. Conclusions Respondents generally reported levels of interest in research higher than their confidence and experience, with many respondents reporting limited experience in most research tasks. Therefore SLPs have potential to benefit from research capacity building activities to increase their research skills in order to meet organisational research engagement objectives. However, these findings must be interpreted with the caveats that a relatively low response rate occurred and participants were recruited from a single state-wide health service, and therefore may not be representative of the wider SLP workforce.