996 resultados para Pr_(1-x)K_xMnO_3


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Oxidation states of transition metal cations in spinels-type oxides are sometimes extremely difficult to determine by conventional spectroscopic methods. One of the most complex cases occurs when there are different cations, each one with several possible oxidation states, as in the case of the magnetoresistant Mn(2-x)V(1+x)O4 (x=0, 1/3 and 1) spinel-type family. In this contribution we describe the determination of the oxidation state of manganese and vanadium in Mn(2-x)V(1+x)O4 (x=0, 1/3,1) spinel-type compounds by analyzing XANES and high-resolution K beta X-ray fluorescence spectra. The ionic models found are Mn22+V4+O4, Mn5/32+V4/33.5+O4 and Mn2+V23+O4. Combination of the present results with previous data provided a reliable cation distribution model. For these spinels, single magnetic electron paramagnetic resonance (EPR) lines are observed at 480 K showing the interaction among the different magnetic ions. The analysis of the EPR parameters show that g-values and relative intensities are highly influenced by the concentration and the high-spin state of Mn2+. EPR broadening linewidth is explained in terms of the bottleneck effect, which is due to the presence of the fast relaxing V3+ ion instead of the weak Mn2+ (S state) coupled to the lattice. The EPR results, at high temperature, are well explained assuming the oxidation states of the magnetic ions obtained by the other spectroscopic techniques. (c) 2013 Elsevier Inc. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Oxidation state and coordination of transition metal cations seems to be hard to assess when considering multiple cations, each one with different possible oxidation states. In fact, this is the case of the spineltype double oxides family. High resolution K beta X-ray fluorescence spectra were measured in Mn(2-x)V(1+4)O4 (x=0 and 1/3) spinels-type double oxides in order to determine the oxidation state and coordination of V and Mn cations. The relative intensity of radiative Auger effect KM2,3M4,5 to the total intensity and the integral absolute difference value were used as reference parameters for the characterization of Mn oxidation states. The coordination of Mn ions was inferred by the intensity of the K beta(5) line. In the case of V compounds, it was used as the intensity of the line K beta' relative to the total area of K beta region. The obtained results were further compared with X-ray absorption spectra analysis, showing good agreements regarding the oxidation state characterization. However, there were found some discrepancies in coordination, due to customary oversimplifications in the K beta(5) line origin. The obtained results might represent valuable and useful data for chemical scopes of characterizing spineltype oxides family. (C) 2013 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Glasses in the system [Na2S](2/3)[(B2S3)(x)(P2S5)(1-x)](1/3) (0.0 <= x <= 1.0) were prepared by the melt quenching technique, and their properties were characterized by thermal analysis and impedance spectroscopy. Their atomic-level structures were comprehensively characterized by Raman spectroscopy and B-11, P-31, and Na-23 high resolution solid state magic-angle spinning (MAS) NMR techniques. P-31 MAS NMR peak assignments were made by the presence or absence of homonuclear indirect P-31-P-31 spin-spin interactions as detected using homonuclear J-resolved and refocused INADEQUATE techniques. The extent of B-S-P connectivity in the glassy network was quantified by P-31{B-11} and B-11{P-31} rotational echo double resonance spectroscopy. The results clearly illustrate that the network modifier alkali sulfide, Na2S, is not proportionally shared between the two network former components, B and P. Rather, the thiophosphate (P) component tends to attract a larger concentration of network modifier species than predicted by the bulk composition, and this results in the conversion of P2S74-, pyrothiophosphate, Na/P = 2:1, units into PS43-, orthothiophosphate, Na/P = 3:1, groups. Charge balance is maintained by increasing the net degree of polymerization of the thioborate (B) units through the formation of covalent bridging sulfur (BS) units, B S B. Detailed inspection of the B-11 MAS NMR spectra reveals that multiple thioborate units are formed, ranging from neutral BS3/2 groups all the way to the fully depolymerized orthothioborate (BS33-) species. On the basis of these results, a comprehensive and quantitative structural model is developed for these glasses, on the basis of which the compositional trends in the glass transition temperatures (T-g) and ionic conductivities can be rationalized. Up to x = 0.4, the dominant process can be described in a simplified way by the net reaction equation P-1 + B-1 reversible arrow P-0 + B-4, where the superscripts denote the number of BS atoms for the respective network former species. Above x = 0.4, all of the thiophosphate units are of the P-0 type and both pyro-(B-1) and orthothioborate (B-0) species make increasing contributions to the network structure with increasing x. In sharp contrast to the situation in sodium borophosphate glasses, four-coordinated thioborate species are generally less abundant and heteroatomic B-S-P linkages appear to not exist. On the basis of this structural information, compositional trends in the ionic conductivities are discussed in relation to the nature of the charge-compensating anionic species and the spatial distribution of the charge carriers.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Negli ultimi tempi sta assumendo grande importanza la ricerca sulla produzione di idrogeno dall’acqua tramite celle foto-elettrolitiche. In questa tesi vengono descritte le analisi condotte su un materiale che può essere coinvolto in questa applicazione: il TiO2 drogato con atomi di V. In particolare è stato valutato l’effetto del drogaggio sull’energy gap tramite misure di trasmittanza ottica effettuate in laboratorio su campioni con diverse concentrazioni di V e trattati termicamente a varie temperature. Nel primo capitolo vengono descritte le caratteristiche dei semiconduttori legate all’ottica, soffermandosi in particolare sul TiO2. Nel secondo capitolo sono illustrati l’apparato e il metodo sperimentale; viene inoltre fornita una descrizione dettagliata dei campioni analizzati. Nel terzo capitolo vengono esposti i risultati delle analisi dei dati.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We reported the first application of in situ shell-isolated nanoparticle enhanced Raman spectroscopy (SHINERS) to an interfacial redox reaction under electrochemical conditions. We construct gap-mode sandwich structures composed of a thiol-terminated HS-6V6H viologen adlayer immobilized on a single crystal Au(111)-(1x1) electrode and covered by Au(60 nm)@SlO(2) core shell nanoparticles acting as plasmonic antennas. We observed high-quality, potential-dependent Raman spectra of the three viologen species V(2+),V(+center dot) and V(0) on a well-defined Au(111) substrate surface and could map their potential-dependent evolution. Comparison with experiments on powder samples revealed an enhancement factor of the nonresonant Raman modes of similar to 3 x 10(5), and up to 9 x 10(7) for the resonance modes. The study illustrates the unique capability of SHINERS and its potential in the entire field of electrochemical surface science to explore structures and reaction pathways on well-defined substrate surfaces, such as single crystals, for molecular, (electro-)- catalytic, bioelectrochemical systems up to fundamental double layer studies at electrified solid/liquid interfaces.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The work described in this thesis had two objectives. The first objective was to develop a physically based computational model that could be used to predict the electronic conductivity, Seebeck coefficient, and thermal conductivity of Pb1-xSnxTe alloys over the 400 K to 700 K temperature as a function of Sn content and doping level. The second objective was to determine how the secondary phase inclusions observed in Pb1-xSnxTe alloys made by consolidating mechanically alloyed elemental powders impact the ability of the material to harvest waste heat and generate electricity in the 400 K to 700 K temperature range. The motivation for this work was that though the promise of this alloy as an unusually efficient thermoelectric power generator material in the 400 K to 700 K range had been demonstrated in the literature, methods to reproducibly control and subsequently optimize the materials thermoelectric figure of merit remain elusive. Mechanical alloying, though not typically used to fabricate these alloys, is a potential method for cost-effectively engineering these properties. Given that there are deviations from crystalline perfection in mechanically alloyed material such as secondary phase inclusions, the question arises as to whether these defects are detrimental to thermoelectric function or alternatively, whether they enhance thermoelectric function of the alloy. The hypothesis formed at the onset of this work was that the small secondary phase SnO2 inclusions observed to be present in the mechanically alloyed Pb1-xSnxTe would increase the thermoelectric figure of merit of the material over the temperature range of interest. It was proposed that the increase in the figure of merit would arise because the inclusions in the material would not reduce the electrical conductivity to as great an extent as the thermal conductivity. If this were to be true, then the experimentally measured electronic conductivity in mechanically alloyed Pb1-xSnxTe alloys that have these inclusions would not be less than that expected in alloys without these inclusions while the portion of the thermal conductivity that is not due to charge carriers (the lattice thermal conductivity) would be less than what would be expected from alloys that do not have these inclusions. Furthermore, it would be possible to approximate the observed changes in the electrical and thermal transport properties using existing physical models for the scattering of electrons and phonons by small inclusions. The approach taken to investigate this hypothesis was to first experimentally characterize the mobile carrier concentration at room temperature along with the extent and type of secondary phase inclusions present in a series of three mechanically alloyed Pb1-xSnxTe alloys with different Sn content. Second, the physically based computational model was developed. This model was used to determine what the electronic conductivity, Seebeck coefficient, total thermal conductivity, and the portion of the thermal conductivity not due to mobile charge carriers would be in these particular Pb1-xSnxTe alloys if there were to be no secondary phase inclusions. Third, the electronic conductivity, Seebeck coefficient and total thermal conductivity was experimentally measured for these three alloys with inclusions present at elevated temperatures. The model predictions for electrical conductivity and Seebeck coefficient were directly compared to the experimental elevated temperature electrical transport measurements. The computational model was then used to extract the lattice thermal conductivity from the experimentally measured total thermal conductivity. This lattice thermal conductivity was then compared to what would be expected from the alloys in the absence of secondary phase inclusions. Secondary phase inclusions were determined by X-ray diffraction analysis to be present in all three alloys to a varying extent. The inclusions were found not to significantly degrade electrical conductivity at temperatures above ~ 400 K in these alloys, though they do dramatically impact electronic mobility at room temperature. It is shown that, at temperatures above ~ 400 K, electrons are scattered predominantly by optical and acoustical phonons rather than by an alloy scattering mechanism or the inclusions. The experimental electrical conductivity and Seebeck coefficient data at elevated temperatures were found to be within ~ 10 % of what would be expected for material without inclusions. The inclusions were not found to reduce the lattice thermal conductivity at elevated temperatures. The experimentally measured thermal conductivity data was found to be consistent with the lattice thermal conductivity that would arise due to two scattering processes: Phonon phonon scattering (Umklapp scattering) and the scattering of phonons by the disorder induced by the formation of a PbTe-SnTe solid solution (alloy scattering). As opposed to the case in electrical transport, the alloy scattering mechanism in thermal transport is shown to be a significant contributor to the total thermal resistance. An estimation of the extent to which the mean free time between phonon scattering events would be reduced due to the presence of the inclusions is consistent with the above analysis of the experimental data. The first important result of this work was the development of an experimentally validated, physically based computational model that can be used to predict the electronic conductivity, Seebeck coefficient, and thermal conductivity of Pb1-xSnxTe alloys over the 400 K to 700 K temperature as a function of Sn content and doping level. This model will be critical in future work as a tool to first determine what the highest thermoelectric figure of merit one can expect from this alloy system at a given temperature and, second, as a tool to determine the optimum Sn content and doping level to achieve this figure of merit. The second important result of this work is the determination that the secondary phase inclusions that were observed to be present in the Pb1-xSnxTe made by mechanical alloying do not keep the material from having the same electrical and thermal transport that would be expected from “perfect" single crystal material at elevated temperatures. The analytical approach described in this work will be critical in future investigations to predict how changing the size, type, and volume fraction of secondary phase inclusions can be used to impact thermal and electrical transport in this materials system.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We present the experimental phase diagram of LiHoxEr1-xF4, a dilution series of dipolar-coupled model magnets. The phase diagram was determined using a combination of ac susceptibility and neutron scattering. Three unique phases in addition to the Ising ferromagnet LiHoF4 and the XY antiferromagnet LiErF4 have been identified. Below x = 0.86, an embedded spin-glass phase is observed, where a spin glass exists within the ferromagnetic structure. Below x = 0.57, an Ising spin glass is observed consisting of frozen needlelike clusters. For x ∼ 0.3–0.1, an antiferromagnetically coupled spin glass occurs. A reduction of TC(x) for the ferromagnet is observed which disobeys the mean-field predictions that worked for LiHoxY1-xF4.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Three-dimensional oxalate-based {[Ru(bpy)3][Cu2xNi2(1-x)(ox)3]}n (0≤ x ≤ 1, ox = C2O42-, bpy = 2,2‘bipyridine) were synthesized. The structure was determined for x = 1 by X-ray diffraction on single crystal. The compound crystallizes in the cubic space group P4132. It shows a three-dimensional 10-gon 3-connected (10,3) anionic network where copper(II) has an unusual tris(bischelated) environment. X-ray powder diffraction patterns and their Rietveld refinement show that all the compounds along the series are isostructural and single-phased. According to X-ray absorption spectroscopy, copper(II) and nickel(II) have an octahedral environment, respectively elongated and trigonally distorted. As shown by natural circular dichroism, the optically active forms of {[Ru(bpy)3][CuxNi2(1-x)(ox)3]}n are obtained starting from resolved Δ- or Λ-[Ru(bpy)3]2+. The Curie−Weiss temperatures range between −55 (x = 1) and −150 K (x = 0). The antiferromagnetic exchange interaction thus decreases when the copper contents increases in agreement with the crystallographic structure of the compounds and the electronic structure of the metal ions. At low temperature, the compounds exhibit complex long-range ordered magnetic behavior.