992 resultados para Potential Linkage
Resumo:
We describe for the first time the application of fast neutron mutagenesis to the genetic dissection of root nodulation in legumes. We demonstrate the utility of chromosomal deletion mutations through production of a soybean supernodulation mutant FN37 that lacks the internal autoregulation of nodulation mechanism. After inoculation with microsymbiont Bradyrhizobium japonicum, FN37 forms at least 10 times more nodules than the wild type G. soja parent and has a phenotype identical to that of chemically induced allelic mutants nts382 and nts1007 (NTS-1 locus). Reciprocal grafting of shoots and roots confirmed systemic shoot control of the FN37 nodulation phenotype. RFLP/PCR marker pUTG132a and AFLP marker UQC-IS1 which are tightly linked to NTS-1 allowed the isolation of BAC contigs delineating both ends of the deletion. The genetic/physical distance ratio in the NTS-1 region is 279 kb/cM. The deletion is estimated to be about 460 kb based on the absence of markers and bacterial artificial chromosomes (BAC) ends as well as genetic and physical mapping. Deletion break points were determined physically and placed within flanking BAC contigs.
Resumo:
The vertebrate Slit gene family currently consists of three members;Slit1,Slit2 and Slit3. Each gene encodes a protein containing multiple epidermal growth factor and leucine rich repeat motifs, which are likely to have importance in cell-cell interactions. In this study, we sought to fully define and characterise the vertebrate Slit gene family. Using long distance PCR coupled with in silico mapping, we determined the genomic structure of all three Slit genes in mouse and man. Analysis of EST and genomic databases revealed no evidence of further Slit family members in either organism. All three Slit genes were encoded by 36 (Slit3) or 37 (Slit1 and Slit2) exons covering at least 143 kb or 183 kb of mouse or human genomic DNA respectively. Two additional potential leucine-rich repeat encoding exons were identified within intron 12 of Slit2. These could be inserted in frame, suggesting that alternate splicing may occur in Slit2 A search for STS sequences within human Slit3 anchored this gene to D5S2075 at the 5' end (exon 4) and SGC32449 within the 3' UTR, suggesting that Slit3 may cover greater than 693 kb. The genomic structure of all Slit genes demonstrated considerable modularity in the placement of exon-intron boundaries such that individual leucine-rich repeat motifs were encoded by individual 72 by exons. This further implies the potential generation of multiple Slit protein isoforms varying in their number of repeat units. cDNA library screening and EST database searching verified that such alternate splicing does occur.
Resumo:
PRL and placental lactogen (PL) play key roles in maintaining the rodent corpus luteum through pregnancy. Suppressors of cytokine signaling (SOCS) have been shown to decrease cell sensitivity to cytokines, including PRL, and so here we have addressed the issue of whether luteolysis induced by prostaglandin F-2alpha (PGF(2alpha)) might up-regulate SOCS proteins to inhibit PRL signaling. In d 19 pregnant rats, cloprostenol, a PGF(2alpha) analog, rapidly induced transcripts for SOCS-3 and, to a lesser extent, SOCS-1. We also found increased SOCS-3 protein in the ovary by immunoblot and in the corpus luteum by immunohistochemistry. Increased SOCS-3 expression was preceded by an increase in STAT3 tyrosine phosphorylation 10 min after cloprostenol injection and was maintained for 4 h, as determined by gel shift and immunohistochemistry. Induction of SOCS-3 was accompanied by a sharp decrease in active STAT5, as determined by gel-shift assay and by loss of nuclear localized STAT5. Four hours after cloprostenol administration, the corpus luteum was refractory to stimulation of STAT5 by PRL administration, and this was not due to down-regulation of PRL receptor. Therefore, induction of SOCS-3 by PGF(2alpha) may be an important element in the initiation of luteolysis via rapid suppression of luteotropic support from PL.
Resumo:
In the periphery, physiological dopamine increases renal blood flow, decreases renal resistance and acts on the kidney tubule to enhance natriuresis and diuresis. The loss of dopamine function may be involoved in the deterioration in kidney function associated with ageing and may have a role in the pathogenesis of hypertension and diabetes. Intravenous dopamine is used as a positive inotrope in the treatment of acute heart failure and cardiogenic shock and as a diuretic in renal failure. The clinical uses of dopamine are limited, as it must be given intravenously, and also has widespread effects. The levels of peripheral dopamine can be increased by the administration of L-dopa to increase synthesis, prodrugs to release dopamine (docarpamine, glu-dopa) or by inhibiting the breakdown of dopamine (nitecapone). Preliminary clinical trials suggest that docarpamine may be useful in patients with low cardiac output syndrome after cardiac surgery and in refractory cirrhotic ascites. Ibopamine is an agonist at dopamine D1 and D2 receptors, which may retard the progression of chronic renal failure. Gludopa is selective for the kidney thus avoiding widespread side effects. The early clinical studies with ibopamine as a diuretic in heart failure were favourable but the subsequent large mortality study showed that ibopamine increased mortality. Fenoldopam is a selective dopamine D1 receptor agonist. Intravenous fenoldopam may be useful in the treatment of hypertension associated with coronary artery bypass surgery or in hypertensive emergencies. Although our understanding of physiological and pathological roles of peripheral dopamine has been increasing rapidly in recent times, we still need more information to allow the design of clinically useful drugs that modify these roles. One priority is an orally-active selective dopamine D1 receptor agonist.
Resumo:
Selective superoxide dismutase (SOD) mimetics are potentially useful in pathological conditions in which there is an overproduction of the superoxide anion O-2.(-). These pathological conditions include inflammation, ischemia/reperfusion, shock, various cardiovascular disorders, amyotrophic lateral sclerosis (ALS) and other neurodegenerative disorders. A major step forward in this field was the development of small-molecule selective SOD mimetics that penetrate cell membranes, These selective SOD mimetics catalytically remove O-2.(-) without interfering with nitric oxide (NO), peroxynitrite (ONOO-) or other radicals such as hydroxyl radical or hydrogen peroxide (H2O2). These selective SOD mimetics (SC-52608, SC-55858, M-40403 and M-40401) have been shown to have benefits in animal models of inflammation, ischemia/reperfusion, shock, thrombosis and diabetes. The next challenge with selective SOD mimetics is to develop therapeutic potential into therapeutic agents.
Resumo:
Clinical trials have established bosentan, an orally active non-selective endothelin (ET) receptor antagonist, as a beneficial treatment in pulmonary hypertension. Trials have also shown short-term benefits of bosentan in systemic hypertension and congestive heart failure. However, bosentan also increased plasma levels of ET-1, probably by inhibiting the clearance of ET-1 by endothelin type B (ET.) receptors, and this may mean its effectiveness is reduced with long-term clinical use. Preliminary data suggests that selective endothelin type A (ETA) receptor antagonists (BQ-123, sitaxsentan) may be more beneficial than the non-selective ET receptor antagonists in heart failure, especially when the failure is associated with pulmonary hypertension. Experimental evidence in animal disease models suggests that non-selective ET or selective ETA receptor antagonism may have a role in the treatment of athero-sclerosis, restenosis, myocarditis, shock and portal hypertension. In animal models of myocardial infarction and/or reperfusion injury, non-selective ET or selective ETA receptor antagonists have beneficial or detrimental effects depending on the conditions and agents used. Thus clinical trials of the nonselective ET or selective ETA receptor antagonists in these conditions are not presently warranted. Several selective endothelin-converting enzyme inhibitors tors have been synthesised recently, and these are only beginning to be tested in animal models of cardiovascular disease, and thus the clinical potential of these inhibitors is still to be defined.
Resumo:
Although the sympathetic nervous system (SNS) plays a major role in mediating the peripheral stress response, due consideration is not usually given to the effects of prolonged stress on the SNS. The present study examined changes in neurotransmission in the SNS after exposure of mice (BALB/c) to stressful housing conditions. Focal extracellular recording of excitatory junction currents (EJCs) was used as a relative measure of neurotransmitter release from different regions of large surface areas of the mouse vas deferens. Mice were either group housed (control), isolation housed (social deprivation), group housed in a room containing rats (rat odor stress), or isolation housed in a room containing rats (concurrent stress). Social deprivation and concurrent stressors induced an increase of 30 and 335% in EJC amplitude, respectively. The success rate of recording EJCs from sets of varicosities in the concurrent stressor group was greater compared with all other groups. The present study has shown that some common animal housing conditions act as stressors and induce significant changes in sympathetic neurotransmission.
Resumo:
Haliclona sp. 628 (Demospongiae, Haplosclerida, Chalinidae), a sponge found on the reef slope below 5 in depth on the Great Barrier Reef, has two unusual characteristics. It contains a symbiotic dinoflagellate, Symbiodinium sp., similar in structure to the dinoflagellate found within Acropora nobilis (S. microadriaticum), and it contains coral nematocysts randomly distributed between the ectosome and endosome and usually undischarged in intact sponge tissue. Given the unusual occurrence of nematocysts in Haliclona sp. 628, the focus of this study was to determine the distribution of this species of sponge on the reef slope at Heron Island Reef in relation to the distribution of potential coral donors. A combination of line and belt transects was used to estimate the abundance of Halielona sp. 628 and a co-occurring congener, Haliclona sp. 1031, which does not contain nematocysts, at three widely separated sites on the reef slope at Heron Island Reef. The abundance of different types of substratum (sand, sand-covered coral rubble, dead A. nobilis, live A. nobilis, other live coral, and other dead coral) along the transects and the substratum to which each sponge colony was attached were also recorded. Despite the predominance of live A. nobilis and sand-covered rubble at all sites, between 30 and 55% of Haliclona sp. 628 colonies were attached to dead A. nobilis which comprised less than 8% of the available substratum along any transect. In contrast, Haliclona sp. 1031 was found significantly more frequently on other dead corals and less frequently on live A. nobilis than would be expected based on the availability of the different substrata in the sites. Potential explanations to account for the distribution of Haliclona sp. 628 in relation to potential coral donors are discussed.
Resumo:
In spite of their wide application in comminution circuits, hydrocyclones have at least one significant disadvantage in that their operation inherently tends to return the fine denser liberated minerals to the grinding mill. This results in unnecessary overgrinding which adds to the milling cost and can adversely affect the efficiency of downstream processes. In an attempt to solve this problem, a three-product cyclone has been developed at the Julius Kruttschnitt Mineral Research Centre (JKMRC) to generate a second overflow in which the fine dense liberated minerals can be selectively concentrated for further treatment. In this paper, the design and operation of the three-product cyclone are described. The influence of the length of the second vortex finder on the performance of a 150-mm unit treating a mixture of magnetite and silica is investigated. Conventional cyclone tests were also conducted under similar conditions. Using the operational performance data of the three-product and conventional cyclones, it is shown that by optimising the length of the second vortex finder, the amount of fine dense mineral particles that reports to the three-product cyclone underflow can be reduced. In addition, the three-product cyclone can be used to generate middlings stream that may be more suitable for flash flotation than the conventional cyclone underflow, or alternatively, could be classified with a microscreen to separate the valuables from the gangue. At the same time, a fines stream having similar properties to those of the conventional overflow can be obtained. Hence, if the middlings stream was used as feed for flash flotation or microscreening, the fines stream could be used in lieu of the conventional overflow without compromising the feed requirements for the conventional flotation circuit. Some of the other potential applications of the new cyclone are described. (C) 2003 Elsevier Science B.V. All rights reserved.
Resumo:
Undiluted culture filtrates of two commercial products of Trichoderma spp., Trichopel and Trichoflow, and two isolates of Penicillium citrinum completely inhibited the conidial germination of macroconidia of Claviceps africana , the cause of ergot or sugary disease of sorghum (Sorghum bicolor) in vitro . Similarly, Pseudomonas aeruginosa and Burkholderia cepacia completely inhibited macroconidial germination, with the former being more effective at high dilutions. In contrast, these bacterial isolates failed to inhibit infection in vivo in glasshouse tests with ergot-inoculated sorghum, but all fungal biocontrol agents (including an isolate of Epicoccum nigrum) reduced the severity of disease (percentage of infected spikelets per panicle), in some cases completely inhibiting the development of ergot. In a second glasshouse trial, optimum control was achieved when the biocontrol agents were applied 3-7 days before inoculation with conidia of C. africana .
Resumo:
Previous studies have shown that a deficiency in DNA damage repair is associated with increased cancer risk, and exposure to UV radiation is a major risk factor for the development of malignant melanoma. High density of common nevi (moles) is a major risk factor for cutaneous melanoma. A nevus may result from a mutation in a single UV-exposed melanocyte which failed to repair DNA damage in one or more critical genes. XRCC3 and XRCC5 may have an effect on nevus count through their function as components of DNA repair processes that may be involved directly or indirectly in the repair of DNA damage due to UV radiation. This study aims to test the hypothesis that the frequency of flat or raised moles is associated with polymorphism at or near these DNA repair genes, and that certain alleles are associated with less efficient DNA repair, and greater nevus density. Twins were recruited from schools in south eastern Queensland and were examined close to their 12th birthday. Nurses examined each individual and counted all moles on the entire body surface. A 10cM genome scan of 274 families (642 individuals) was performed and microsatellite polymorphisms in XRCC3 and adjacent to XRCC5 were also typed. Linkage and association of nevus count to these loci were tested simultaneously using a structural-equation modeling approach implemented in MX. There is weak evidence for linkage of XRCC5 to a QTL influencing raised mole count, and also weak association. There is also weak evidence for association between flat mole count and XRCC3. No tests were significant after correction for testing multiple alleles, nor were any of the tests for total association significant. If variation in XRCC3 or XRCC5 influences UV sensitivity, and indirectly affects nevus density, then the effects are small.
Resumo:
The ability of viral or mutated cellular oncogenes to initiate neoplastic events and their poor immunogenicity have considerably undermined their potential use as immunotherapeutic tools for the treatment of human cancers. Using an EpsteinBarr virus-encoded oncogene, latent membrane protein 1 (LMP1), as a model, we report a novel strategy that both deactivates cellular signaling pathways associated with the oncogenic phenotype and reverses poor immunogenicity. We show that cotranslational ubiquitination combined with Wend rule targeting of LMP1 enhanced the intracellular degradation of LMP1 and total blockade of LMP1-mediated nuclear factor-kappaB (NF-kappaB) and signal transducer and activator of transcription (STAT) activation in human cells. In addition, although murine cells expressing LMP1 were uniformly tumorigenic, this oncogenicity was completely abrogated by covalent linkage of LMP1 with ubiquitin, while an enhanced CD8(+) T cell response to a model epitope fused to the C-terminus of LMP1 was observed following immunization with ubiquitinated LMP1. These observations suggest that proteasomal targeting of tumor-associated oncogenes could be exploited therapeutically by either gene therapy or vaccination.