903 resultados para Potassium excretion
Resumo:
The effect of sesquioxides on the mechanisms of chemical reactions that govern the transformation between exchangeable potassium (Kex) and non-exchangeable K (Knex) was studied on acid tropical soils from Colombia: Caribia with predominantly 2 : 1 clay minerals and High Terrace with predominantly 1 : 1 clay minerals and sesquioxides. Illite and vermiculite are the main clay minerals in Caribia followed by kaolinite, gibbsite, and plagioclase, and kaolinite is the major clay mineral in High Terrace followed by hydroxyl-Al interlayered vermiculite, quartz, and pyrophyllite. The soils have 1.8 and 0.5% of K2O, respectively. They were used either untreated or prepared by adding AlCl3 and NaOH, which produced aluminum hydroxide. The soils were percolated continuously with 10mM NH4OAc at pH 7.0 and 10 mM CaCl2 at pH 5.8 for 120 h at 6 mL h(-1) to examine the release of Kex and Knex. In the untreated soils, NH4+ and Ca-2(+) released the same amounts of Kex from Caribia, whereas NH4+ released about twice as much Kex as Ca2+ from High Terrace. This study proposes that the small ionic size of NH4+ (0.54nm) enables it to enter more easily into the K sites at the broken edges of the kaolinite where Ca2+ (0.96 nm) cannot have access. As expected for a soil dominated by 2 : 1 clay minerals, Ca2+ caused Knex to be released from Caribia with no release by NH4+. No Knex was released by either ion from High Terrace. After treatment with aluminum hydroxide, K release from the exchangeable fraction was reduced in Caribia due to the blocking of the exchange sites but release of Knex was not affected. The treatment increased the amount of Kex released from the High Terrace soil and the release of Knex remained negligible although with Ca2+ the distinction between Kex and Knex was unclear. The increase in Kex was attributed to the initially acidic conditions produced by adding AlCl3 which may have dissolved interlayered aluminum hydroxide from the vermiculite present, thus exposing trapped K as exchangeable K. The subsequent precipitation of aluminum hydroxide when NaOH was added did not interfere with the release of this K, and so was probably formed mostly on the surface of the dominant kaolinite. Measurement of availability of K by standard methods using NH4 salts could result in overestimates in High Terrace and this may be a more general shortcoming of the methods in kaolinitic soils.
Resumo:
Tomato plants ( Lycopersicon esculentum Mill. var. DRK) were grown hydroponically to determine the effect of an uneven distribution of nutrients in the root zone on blossomend rot (BER) and Ca and K concentrations in the fruits. The plants were grown in rockwool with their root system divided into two portions. Each portion was irrigated with nutrient solutions with either the same or the different electrical conductivity (EC) in the range 0 to 6 dS m(-1). Solutions with high EC supplied to both sides of the root system significantly increased the incidence of BER. However, when only water or a solution of low EC was supplied to one portion, BER was reduced by 80%. Fruit yields were significantly higher ( P < 0.01) for plants that received solutions of the uneven EC treatments (6/0 or 4.5/0 EC treatment). Plants supplied with solutions of uneven EC generally had higher leaf and fruit concentrations of Ca but lower concentrations of K than those supplied with solutions of high EC. There was no difference in Ca concentration at the distal end of young fruits of the uneven EC treatment but it was reduced in the high EC treatments. The concentration of K in the mature fruits of the uneven EC treatments was lower than that of the high EC treatments and higher or similar that of the 3/3 or 2.5/2.5 EC treatments ( controls). A clear relationship was found between the incidence of BER and the exudation rate. High rate of xylem exudation was observed in the uneven EC treatments. Reduction of BER in the uneven EC treatments is most likely to be the effect of high exudation rate on Ca status in the young fruits. It was concluded that high EC of solution had positive effects on Ca concentration and incidence of BER provided that nutrient solution with low EC or water is supplied to the one portion of the root system.
Resumo:
Effects of increased ammonia and/or arginine absorption across the portal-drained viscera (PDV) on net splanchnic (PDV and liver) metabolism of nitrogenous compounds and urinary N excretion were investigated in six cathetenzed Hereford x Angus steers (501 +/- 1 kg BW) fed a 75% alfalfa:25% (as-fed basis) corn-soybean meal diet (0.523 MJ of ME/[kg BW0.15.d]) every 2 h without (27.0 g of N/kg of dietary DM) and with 20 g of urea/kg of dietary DM (35.7 g of N/kg of dietary DM) in a split-plot design. Net splanchnic flux measurements were obtained immediately before beginning and ending a 72-h mesenteric vein infusion of L-arginine (15 mmol/h). For 3 d before and during arginine infusion, daily urine voided was measured and analyzed for N composition. Feeding urea increased PDV absorption (P < 0.01) and hepatic removal (P < 0.01) of ammonia N, accounting for 80% of increased hepatic urea N output (P < 0.01). Numerical increases in net hepatic removal of AA N could account for the remaining portion of increased hepatic urea N output. Arginine infusion increased hepatic arginine removal (P < 0.01) and hepatic urea N output (P < 0.03) and switched hepatic ornithine flux from net uptake to net output (P < 0.01), but numerical changes in net hepatic removal of ammonia and AA N could not account fully for the increase in hepatic urea N output. Increases in urine N excretion equaled quantities of N fed as urea or infused as arginine. Estimated salivary urea N excretion was not changed by either treatment. Urea cycle regulation occurs via a complex interaction of mechanisms and requires N sources other than ammonia, but the effect of increased ammonia absorption on hepatic catabolism of individual AA in the present study was not significant.
Resumo:
Tomato plants ( Lycopersicon esculentum Mill. var. DRK) were grown hydroponically to determine the effect of an uneven distribution of nutrients in the root zone on blossomend rot (BER) and Ca and K concentrations in the fruits. The plants were grown in rockwool with their root system divided into two portions. Each portion was irrigated with nutrient solutions with either the same or the different electrical conductivity (EC) in the range 0 to 6 dS m(-1). Solutions with high EC supplied to both sides of the root system significantly increased the incidence of BER. However, when only water or a solution of low EC was supplied to one portion, BER was reduced by 80%. Fruit yields were significantly higher ( P < 0.01) for plants that received solutions of the uneven EC treatments (6/0 or 4.5/0 EC treatment). Plants supplied with solutions of uneven EC generally had higher leaf and fruit concentrations of Ca but lower concentrations of K than those supplied with solutions of high EC. There was no difference in Ca concentration at the distal end of young fruits of the uneven EC treatment but it was reduced in the high EC treatments. The concentration of K in the mature fruits of the uneven EC treatments was lower than that of the high EC treatments and higher or similar that of the 3/3 or 2.5/2.5 EC treatments ( controls). A clear relationship was found between the incidence of BER and the exudation rate. High rate of xylem exudation was observed in the uneven EC treatments. Reduction of BER in the uneven EC treatments is most likely to be the effect of high exudation rate on Ca status in the young fruits. It was concluded that high EC of solution had positive effects on Ca concentration and incidence of BER provided that nutrient solution with low EC or water is supplied to the one portion of the root system.
Resumo:
The title compound, potassium nickel(II) digallium tris-( phosphate) dihydrate, K[NiGa2(PO4)(3)(H2O)(2)], was synthesized hydrothermally. The structure is constructed from distorted trans-NiO4(H2O)2 octahedra linked through vertices and edges to GaO5 trigonal bipyramids and PO4 tetrahedra, forming a three-dimensional framework of formula [NiGa2(PO4)(3)(H2O)(2)](-). The K, Ni and one P atom lie on special positions (Wyckoff position 4e, site symmetry 2). There are two sets of channels within the framework, one running parallel to the [10 (1) over bar] direction and the other parallel to [001]. These intersect, forming a three-dimensional pore network in which the water molecules coordinated to the Ni atoms and the K+ ions required to charge balance the framework reside. The K+ ions lie in a highly distorted environment surrounded by ten O atoms, six of which are closer than 3.1 angstrom. The coordinated water molecules are within hydrogen-bonding distance to O atoms of bridging Ga-O-P groups.
Resumo:
A new class of ionophore consisting of two calix[4]arene units linked through the lower rim by two ethylene chains, in combination with propyl ether and phenolic functional groups, has been developed. These calix[4]semitube molecules exhibit remarkable selectivity and fast complexation kinetics for potassium over all Group 1 metal cations. Molecular modelling studies, using structural models derived from crystallographic data, suggest the potassium cation is complexed by a horizontal, side-on route and not through the calix[4]arene annulus. The length of the bridging alkylene chain between the respective calix[4]arenes of the semitube structure dictates the strength and selectivity of alkali metal cation binding.
Resumo:
Cigarette smoking is associated with increased oxidative stress and increased risk of degenerative disease. As the major lipophilic antioxidant, requirements for vitamin E may be higher in smokers due to increased utilisation. In this observational study we have compared vitamin E status in smokers and non-smokers using a holistic approach by measuring plasma, erythrocyte, lymphocyte and platelet alpha- and gamma-tocopherol, as well as the specific urinary vitamin E metabolites alpha- and gamma-carboxyethylhydroxychroman (CEHC). Fifteen smokers (average age 27 years, smoking time 7.5 years) and non-smokers of comparable age, gender and body mass index (BMI) were recruited. Subjects completed a 7-day food diary and on the final day they provided a 24 h urine collection and a 20 ml blood sample for measurement of urinary vitamin E metabolites and total vitamin E in blood components, respectively. No significant differences were found between plasma and erythrocyte alpha- and gamma-tocopherol in smokers and non-smokers. However, smokers had significantly lower ce-tocopherol (mean +/-SD, 1.34+/-0.31 mumol/g protein compared with 1.94+/-0.54, P = 0.001) and gamma-tocopherol (0.19 +/- 0.04 mumol/g protein compared with 0.26 +/- 0.08, P = 0.026) levels in their lymphocytes, as well as significantly lower (alpha-tocopherol levels in platelets (1.09 +/- 0.49 mumol/g protein compared with 1.60 +/- 0.55, P = 0.014; gamma-tocopherol levels were similar). Interestingly smokers also had significantly higher excretion of the urinary gamma-tocopherol metabolite, gamma-CEHC (0.49 +/- 0.25 mg/g creatinine compared with 0.32 +/- 0.16, P = 0.036) compared to non-smokers, while their (alpha-CEHC (metabolite of a-tocopherol) levels were similar. There was no significant difference between plasma ascorbate, urate and F-2-isoprostane levels. Therefore in this population of cigarette smokers (mean age 27 years, mean smoking duration 7.5 years), alterations to vitamin E status can be observed even without the more characteristic changes to ascorbate and F-2-isoprostanes. We suggest that the measurement of lymphocyte and platelet vitamin E may represent a valuable biomarker of vitamin E status in relation to oxidative stress conditions.
Resumo:
Recent reports have demonstrated various cardiovascular and neurological benefits associated with the consumption of foods rich in anthocyanidins. However, information regarding absorption, metabolism, and especially, tissue distribution are only beginning to accumulate. In the present study, we investigated the occurrence and the kinetics of various circulating pelargonidin metabolites, and we aimed at providing initial information with regard to tissue distribution. Based on HPLC and LC-MS analyses we demonstrate that pelargonidin is absorbed and present in plasma following oral gavage to rats. In addition, the main structurally related pelargonidin metabolite identified in plasma and urine was pelargonidin glucuronide. Furthermore, p-hydroxybenzoic acid, a ring fission product of pelargonidin, was detected in plasma and urine samples obtained at 2 and 18 h after ingestion. At 2 h post-gavage, pelargonidin glucuronide was the major metabolite detected in kidney and liver, with levels reaching 0.5 and 0.15 nmol pelargonidin equivalents/g tissue, respectively. Brain and lung tissues contained detectable levels of the aglycone, with the glucuronide also present in the lungs. Other tissues, including spleen and heart, did not contain detectable levels of pelargonidin or ensuing metabolites. At 18 h post-gavage, tissue analyses did not reveal detectable levels of the aglycone nor of pelargonidin glucuronides. Taken together, our results demonstrate that the overall uptake of the administered pelargonidin was 18 % after 2 h, with the majority of the detected levels located in the stomach. However, the amounts recovered dropped to 1.2 % only 18 h post-gavage, with the urine and faecal content constituting almost 90 % of the total recovered pelargonidin.
Resumo:
The utility of repeated salivary cortisol sampling as a substitute for 24-hour urinary-free cortisol (UFC) assessment was examined. Forty-four participants completed both 24-hour collections and 6 salivary collections at wake-up, 08:00, 12:00, 16:00, 20:00 and bedtime, during the same 24-hour period. The results demonstrated that mean, maximum, and amplitude (maximum minus minimum) for salivary cortisol all correlated positively with urinary cortisol, but the associations of these variables with urinary-free cortisol excretion were relatively small. Furthermore, a single salivary sample taken at wake-up was as good an indicator of overall cortisol production as the measures derived from multiple salivary samples. An examination of subject compliance indicated that many subjects failed to collect the timed salivary collections as instructed. The authors conclude that diurnal salivary cortisol sampling versus 24-hour urinary cortisol collections are likely to provide different information about ambient hypothalamic-pituitary-adrenal productivity, and therefore these measures should not be used interchangeably. In addition, subject compliance is a serious consideration in designing studies that employ home salivary collections. Published by Elsevier Science Inc.
Resumo:
The thermal decomposition of the complex K-4[Ni(NO2)6]center dot H2O has been investigated over the temperature range 25-600 degrees C by a combination of infrared spectroscopy, powder X-ray diffraction, FAB-mass spectrometry and elemental analysis. The first stage of reaction is loss of water and isomerisation of one of the coordinated nitro groups to form the complex K-4 [Ni(NO2)(4) (ONO)]center dot NO2. At temperatures around 200 degrees C the remaining nitro groups within the complex isomerise to the chelating nitrite form and this process acts as a precursor to the loss of NO2 gas at temperatures above 270 degrees C. The product, which is stable up to 600 degrees C, is the complex K-4[Ni(ONO)(4)]center dot NO2, where the nickel atom is formally in the +1 oxidation state. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
Two controlled microcosm experiments aimed at a critical re-assessment of the contributions of divergent arbuscular mycorrhizal (AM) fungi to plant mineral nutrition were established that specifically targeted Plantago lanceolata–Glomus intraradices (B.B/E) and –Gigaspora margarita (BEG 34) symbioses developed in a native, nutrient limited, coastal dune soil. Plant tissue nitrogen (N), phosphorus (P) and potassium (K) status as well as plant growth parameters and levels of mycorrhizal colonization were assessed at harvest. In addition to the general well-established mycorrhizal facilitation of P uptake, the study was able to demonstrate a G. intraradices-specific contribution to improved plant nitrogen and potassium nutrition. In the two respective experiments, G. intraradices-inoculated plants had 27.8% and 40.8% more total N and 55.8% and 23.3% more total K when compared to Gi. margarita inoculated counterparts. Dissimilar overall contribution of the two isolates to plant nutrition was identified in AM-genus specific differences in plant tissue N:P:K ratios. G. intraradices inoculated and non-mycorrhizal plants generally exhibited N:P:K ratios indicative of P limitation whereas for Gi.margarita mycorrhizal plants, corresponding ratios strongly implied either N or K limitation. The study provides further evidence highlighting AM functional biodiversity in respect to plant nutrient limitation experienced by mycorrhizal P. lanceolata in an ecologically relevant soil system.
Resumo:
The principal driver of nitrogen (N) losses from the body including excretion and secretion in milk is N intake. However, other covariates may also play a role in modifying the partitioning of N. This study tests the hypothesis that N partitioning in dairy cows is affected by energy and protein interactions. A database containing 470 dairy cow observations was collated from calorimetry experiments. The data include N and energy parameters of the diet and N utilization by the animal. Univariate and multivariate meta-analyses that considered both within and between study effects were conducted to generate prediction equations based on N intake alone or with an energy component. The univariate models showed that there was a strong positive linear relationships between N intake and N excretion in faeces, urine and milk. The slopes were 0.28 faeces N, 0.38 urine N and 0.20 milk N. Multivariate model analysis did not improve the fit. Metabolizable energy intake had a significant positive effect on the amount of milk N in proportion to faeces and urine N, which is also supported by other studies. Another measure of energy considered as a covariate to N intake was diet quality or metabolizability (the concentration of metabolizable energy relative to gross energy of the diet). Diet quality also had a positive linear relationship with the proportion of milk N relative to N excreted in faeces and urine. Metabolizability had the largest effect on faeces N due to lower protein digestibility of low quality diets. Urine N was also affected by diet quality and the magnitude of the effect was higher than for milk N. This research shows that including a measure of diet quality as a covariate with N intake in a model of N execration can enhance our understanding of the effects of diet composition on N losses from dairy cows. The new prediction equations developed in this study could be used to monitor N losses from dairy systems.
Resumo:
An obese-type human microbiota with an increased Firmicutes:Bacteroidetes ratio has been described that may link the gut microbiome with obesity and metabolic syndrome (MetS) development. Dietary fat and carbohydrate are modifiable risk factors that may impact on MetS by altering the human microbiome composition. We determined the effect of the amount and type of dietary fat and carbohydrate on faecal bacteria and short chain fatty acid (SCFA) concentrations in people ‘at risk’ of MetS.