975 resultados para Posttranslational Modifications


Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Covalent modifications of proteins often modulate their biological functions or change their subcellular location. Among the many known protein modifications, three are exceptional in that they only occur on single proteins: ethanolamine phosphoglycerol, diphthamide and hypusine. Remarkably, the corresponding proteins carrying these modifications, elongation factor 1A, elongation factor 2 and initiation factor 5A, are all involved in elongation steps of translation. For diphthamide and, in part, hypusine, functional essentiality has been demonstrated, whereas no functional role has been reported so far for ethanolamine phosphoglycerol. We review the biosynthesis, attachment and physiological roles of these unique protein modifications and discuss common and separate features of the target proteins, which represent essential proteins in all organisms.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Chelated somatostatin agonists have been shown to be sensitive to N-terminal radiometal modifications, with Ga-DOTA agonists having significantly higher binding affinity than their Lu-, In-, and Y-DOTA correlates. Recently, somatostatin antagonists have been successfully developed as alternative tracers to agonists. The aim of this study was to evaluate whether chelated somatostatin antagonists are also sensitive to radiometal modifications and how. We have synthesized 3 different somatostatin antagonists, DOTA-p-NO(2)-Phe-c[D-Cys-Tyr-D-Aph(Cbm)-Lys-Thr-Cys]-D-Tyr-NH(2), DOTA-Cpa-c[D-Cys-Aph(Hor)-D-Aph(Cbm)-Lys-Thr-Cys]-D-Tyr-NH(2) (DOTA-JR11), and DOTA-p-Cl-Phe-c[D-Cys-Tyr-D-Aph(Cbm)-Lys-Thr-Cys]-D-Tyr-NH(2), and added various radiometals including In(III), Y(III), Lu(III), Cu(II), and Ga(III). We also replaced DOTA with 1,4,7-triazacyclononane,1-glutaric acid-4,7-acetic acid (NODAGA) and added Ga(III). The binding affinity of somatostatin receptors 1 through 5 was evaluated in all cases. In all 3 resulting antagonists, the Ga-DOTA analogs were the lowest-affinity radioligands, with a somatostatin receptor 2 binding affinity up to 60 times lower than the respective Y-DOTA, Lu-DOTA, or In-DOTA compounds. Interestingly, however, substitution of DOTA by the NODAGA chelator was able to increase massively its binding affinity in contrast to the Ga-DOTA analog. The 3 NODAGA analogs are antagonists in functional tests. In vivo biodistribution studies comparing (68)Ga-DOTATATE agonist with (68)Ga-DOTA-JR11 and (68)Ga-NODAGA-JR11 showed not only that the JR11 antagonist radioligands were superior to the agonist ligands but also that (68)Ga-NODAGA-JR11 was the tracer of choice and preferable to (68)Ga-DOTA-JR11 in transplantable HEK293-hsst(2) tumors in mice. One may therefore generalize that somatostatin receptor 2 antagonists are sensitive to radiometal modifications and may preferably be coupled with a (68)Ga-NODAGA chelator-radiometal complex.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Introduction: Advances in biotechnology have shed light on many biological processes. In biological networks, nodes are used to represent the function of individual entities within a system and have historically been studied in isolation. Network structure adds edges that enable communication between nodes. An emerging fieldis to combine node function and network structure to yield network function. One of the most complex networks known in biology is the neural network within the brain. Modeling neural function will require an understanding of networks, dynamics, andneurophysiology. It is with this work that modeling techniques will be developed to work at this complex intersection. Methods: Spatial game theory was developed by Nowak in the context of modeling evolutionary dynamics, or the way in which species evolve over time. Spatial game theory offers a two dimensional view of analyzingthe state of neighbors and updating based on the surroundings. Our work builds upon this foundation by studying evolutionary game theory networks with respect to neural networks. This novel concept is that neurons may adopt a particular strategy that will allow propagation of information. The strategy may therefore act as the mechanism for gating. Furthermore, the strategy of a neuron, as in a real brain, isimpacted by the strategy of its neighbors. The techniques of spatial game theory already established by Nowak are repeated to explain two basic cases and validate the implementation of code. Two novel modifications are introduced in Chapters 3 and 4 that build on this network and may reflect neural networks. Results: The introduction of two novel modifications, mutation and rewiring, in large parametricstudies resulted in dynamics that had an intermediate amount of nodes firing at any given time. Further, even small mutation rates result in different dynamics more representative of the ideal state hypothesized. Conclusions: In both modificationsto Nowak's model, the results demonstrate the network does not become locked into a particular global state of passing all information or blocking all information. It is hypothesized that normal brain function occurs within this intermediate range and that a number of diseases are the result of moving outside of this range.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND: The rigorous test to which homeopathy was subject in our recent double-blind clinical trail of homeopathic treatment of attention deficit hyperactivity disorder (ADHD) necessitated optimized treatment meeting the highest standards. METHODS: Optimization was performed in three steps: (1) In successfully treated children, prescriptions leading to an insufficient response were analysed by a general questionnaire to identify unreliable symptoms. (2) Polarity analysis, a further development of Bönninghausen's concept of contraindications, was introduced in response to the frequently one-sided symptoms. This enabled us to use few but specific symptoms to identify the medicine whose genius symptoms exhibit the closest match to the patient's characteristic symptoms. (3) We investigated the influence of the primary perception symptoms on the result of the repertorization. Perception symptoms are not normally recorded during a patient interview even though they are among the most reliable facts related by the patients. At the same time we were able to improve the continuity of improvement of ADHD symptoms using liquid Q-potencies. RESULTS: Introducing the questionnaire, polarity analysis, and including perception symptoms, lead to an improvement in the success rate of the first prescription from 21% to 54%, of the fifth prescription from 68% to 84%.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The mRNA stabilizing factor HuR is involved in the posttranscriptional regulation of many genes, including that coding for cyclooxygenase 2 (COX-2). Employing RNA interference technology and actinomycin D experiments, we demonstrate that in human mesangial cells (hMC) the amplification of cytokine-induced COX-2 by angiotensin II (AngII) occurs via a HuR-mediated increase of mRNA stability. Using COX-2 promoter constructs with different portions of the 3' untranslated region of COX-2, we found that the increase in COX-2 mRNA stability is attributable to a distal class III type of AU-rich element (ARE). Likewise, the RNA immunoprecipitation assay showed AngII-induced binding of HuR to this ARE. Using the RNA pulldown assay, we demonstrate that the AngII-caused HuR assembly with COX-2 mRNA is found in free and cytoskeleton-bound polysomes indicative of an active RNP complex. Mechanistically, the increased HuR binding to COX-2-ARE by AngII is accompanied by increased nucleocytoplasmic HuR shuttling and depends on protein kinase Cdelta (PKCdelta), which physically interacts with nuclear HuR, thereby promoting its phosphorylation. Mapping of phosphorylation sites identified serines 221 and 318 as critical target sites for PKCdelta-triggered HuR phosphorylation and AngII-induced HuR export to the cytoplasm. Posttranslational modification of HuR by PKCdelta represents an important novel mode of HuR activation implied in renal COX-2 regulation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Purpose: A satisfactory clinical outcome in dental implant treatment relies on primary stability for immediate load bearing. While the geometric design of an implant contributes to mechanical stability, the nature of the implant surface itself is also critically important. Biomechanical and microcomputerized tomographic evaluation of implant osseointegration was performed to compare alternative structural, chemical and biochemical, and/or pharmaceutical surface treatments applied to an identical established implant design. Materials and Methods: Dental implants with the same geometry but with 6 different surface treatments were tested in vivo in a sheep model (pelvis). Peri-implant bone density and removal torque were compared at 2, 4, and 8 weeks after implantation. Implant surfaces tested were: sandblasted and acid-etched titanium (Ti), sandblasted and etched zirconia, Ti coated with calcium phosphate (CaP), Ti modified via anodic plasma-chemical treatment (APC), bisphosphonate-coated Ti (Ti + Bisphos), and Ti coated with collagen containing chondroitin sulfate (CS). Results: All dental implants were well integrated at the time of sacrifice. There were no significant differences observed in peri-implant bone density between implant groups. After 8 weeks of healing, removal torque values for Ti, Ti + CaP, Ti + Bisphos, and Ti + collagen + CS were significantly higher than those for zirconia and Ti + APC. Conclusions: Whereas the sandblasted/acid-etched Ti implant can still be considered the reference standard surface for dental implants, functional surface modifications such as bisphosphonate or collagen coating seem to enhance early peri-implant bone formation and should be studied further.