942 resultados para Poly(2-hydroxyethyl Methacrylate)


Relevância:

40.00% 40.00%

Publicador:

Resumo:

This paper reports the preparation and characterization of poly-{trans-[RuCl(2)(vpy)(4)]-styrene-divinylbenzene} and styrene-divinylbenzene-vinylpiridine filled with nanosilver. Theses materials were synthesized by non aqueous polymerization through a chemical reaction using benzoyl peroxide as the initiator. The nanosilver was obtained from chemical reduction using NaBH(4) as reducing agent and sodium citrate as stabilizer. The nanometric dimension of nanosilver was monitored by UV-visible and confirmed through TEM. The morphology was characterized by SEM and the thermal properties were done by TGA and DSC. The antimicrobial action of the polymers impregnated with nanosilver was evaluated using both microorganisms, Staphylococcus aureus and Escherichia coli. The antimicrobial activity of the poly-{trans-[RuCl(2)(vpy)(4)]-styrene-divinylbenzene} filled with nanosilver was confirmed by the presence of an inhibition halo of the bacterial growth in seeded culture media, but was not confirmed to the styrene-divinylbenzene-vinylpiridine. The present work suggest that trans - [RuCl(2)(vpy)(4)] complex facilitate the release of silver ion from the media.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The coating of cotton fiber is used in the textile industry to increase the mechanical resistance of the yarn and their resistance to vibration, friction, impact, and elongation, which are some of the forces to which the yarn is subjected during the weaving process. The main objective of this study was to investigate the use of synthetic hydrophilic polymers, poly(vinyl alcohol) (PVA), and poly(N-vinyl-2-pyrrolidone) (PVP) to coat 100% cotton textile fiber, with the aim of giving the fiber temporary mechanical resistance. For the fixation of the polymer on the fiber, UV-C radiation was used as the crosslinking process. The influence of the crosslinking process was determined through tensile testing of the coated fibers. The results indicated that UV-C radiation increased the mechanical resistance of the yarn coated with PVP by up to 44% and the yarn coated with PVA by up to 67% compared with the pure cotton yarn, that is, without polymeric coating and crosslinking. This study is of great relevance, and it is important to consider that UV-C radiation dispenses with the use of chemical substances and prevents the generation of toxic waste at the end of the process. (C) 2010 Wiley Periodicals, Inc. J Appl Polym Sci 119: 2560-2567, 2011

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Coating of cotton yarn is employed in the textile industry to increase the mechanical resistance of the yarns and resistance to vibration, friction, impact, and elongation, which are some of the forces to which the yarn is subjected during the weaving process. The main objective of this study is to investigate the usage of a synthetic hydrophilic polymer, poly(N-vinyl-2-pyrrolidone) (PVP), to coat 100% cotton textile yarn, aiming to give the yarn a temporary mechanical resistance. For the improvement of the mechanical resistance of the yarn, the following crosslinking processes of PVP were investigated: UV-C (ultraviolet) radiation, the Fenton and photo-Fenton reactions, and sensitized UV-C radiation. The influence of each crosslinking process was determined through tensile testing of the coated yarns. The results indicated that the best crosslinking process employed was UV-C radiation; increasing the mechanical resistance of the yarn up to 44% if compared with the pure cotton yarn, that is, without polymeric coating and crosslinking. POLYM. ENG. SCI., 51:445-453, 2011. (C) 2010 Society of Plastics Engineers

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The thioxanthone-sensitized photodegradation of poly(alkyl methacrylate) films [alkyl = methyl, ethyl, butyl, and hexyl] was studied using near UV-vis light. The photooxidation process continued even after the total consumption of the sensitizer, possibly due to the excitation of the ketyl groups formed during the first stages of the process. The rate of oxidation, as well as the formation of hydroxy, peroxy, and ketyl groups was faster for polymers with larger ester groups. The decrease of the molecular weight of the degradated polymers was also larger for the hexyl substituted polymer. The side-chain size effect was attributed to the larger amount of secondary hydrogens available for abstraction by the triplet state of thioxanthone, present in the larger ester groups. The lower glass transition temperature of the hexyl substituted polymer allows a better diffusion of oxygen to the deeper layers of the films that also contributes to the faster photodegradation rate. (C) 2009 Wiley Periodicals, Inc. J Appl Polym Sci 115: 1283-1288, 2010

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Bacterial cellulose/polymethacrylate nanocomposites have received attention in numerous areas of study and in a variety of applications. The attractive properties of methacrylate polymers and bacterial cellulose, BC, allow the synthesis of new nanocomposites with distinct characteristics. In this study, BC/poly(glycidylmethacrylate) (BC/PGMA) and BC/poly(ethyleneglycol)methacrylate (BC/PPEGMA) nanocomposites were prepared through in situ free radical polymerization of GMA and PEGMA, respectively. Ammonium persulphate (APS) was used as an initiator and N,N’methylenebisacrilamide (MBA) was used as a crosslinker in BC/PGMA. Chemical composition, morphology, thermal stability, water absorption, mechanic and surface properties were determined through specific characterization techniques. The optimal polymerization was obtained at (1:2) for BC/PGMA, (1:2:0.2) ratio for BC/GMA/MBA and (1:20) for BC/PPEGMA, with 0.5% of initiator at 60 ºC during 6 h. A maximum of 67% and 87% of incorporation percentage was obtained, respectively, for the nanocomposites BC/PGMA/MBA and BC/PPEGMA. BC/PGMA nanocomposites exhibited an increase of roughness and compactation of the three-dimensional structure, an improvement in the thermal and mechanical properties, and a decrease in their swelling ability and crystallinity. On the other hand, BC/PPEGMA showed a decrease of stiffness of three-dimensional structure, improvement in thermal and mechanical properties, an increase in their swelling ability and a decrease the crystallinity. Both BC/polymethacrylate nanocomposites exhibited a basic surface character. The acid treatment showed to be a suitable strategy to modifiy BC/PGMA nanocomposites through epoxide ring-opening reaction mechanism. Nanocomposites became more compact, smooth and with more water retention ability. A decrease in the thermal and mechanical proprieties was observed. The new nanocomposites acquired properties useful to biomedical applications or/and removal of heavy metals due to the presence of functional groups.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Poly(styrene-co-methyl methacrylate) (PS-PMMA) ionomers with several degrees of sulfonation were synthesized and characterized by infrared, UV-vis, and NMR spectroscopies, elemental analysis, and differential scanning calorimetry (DSC). Stable Langmuir films could be produced with PS-PMMA with 3 and 6 mol % of sulfonation, while PS-PMMA 8% exhibited material loss to the water subphase, probably due to its higher solubility. Surface pressure and surface potential isotherms with PS-PMMA 3% spread onto salt-containing subphases pointed to a film behavior characteristic of the polyelectrolyte effect, where charge repulsion governs the film properties. The Langmuir-Blodgett films of this ionomer were successfully transferred onto various substrates, as confirmed by UV-vis and FTIR spectroscopies. Using cycling voltammetry, we show that LB films from PS-PMMA 3% can be applied in selective sensing of dopamine, even in the presence of interferents such as ascorbic acid.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Electrostatic interactions govern most properties of polyelectrolyte films, as in the photoinduced bire-fringence of azo-containing polymers. In this paper we report a systematic investigation of optical storage characteristics of cast and layer-by-layer (LbL) films of poly[1 -[4-(3-carboxy-4 hydroxypheny-lazo) benzene sulfonamido]-1,2-ethanediyl, sodium salt] (PAZO). Birefringence was photoinduced faster in PAZO cast films prepared at high pHs, with the characteristic writing times decreasing almost linearly with the pH in the range between 4 and 9. This was attributed to an increased free volume for the azochromophores with the enhanced electrostatic repulsion in PAZO charged to a greater extent. In contrast, in LbL films of PAZO alternated with poly(allylamine hydrochloride) (PAH), the electrostatic interactions between the oppositely charged polymers hampered photoisomerization and molecular rearrangement, thus leading to a slower writing kinetics for highly charged PAH or PAZO.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The kinetics of the buildup and decay of photoinduced birefringence was examined in a series of host-guest systems: azobenzene-containing crown ethers, differing in the size of the crowns, dissolved in a poly (methyl methacrylate) matrix. In all samples, the kinetics of the buildup of the birefringence was reasonably described by a sum of two exponential functions, the time constants being inversely proportional to the intensity of the pumping light and the magnitudes of the signals at the saturation level depending on the pumping light intensity and sample thickness. The dark decays were best described by the stretched exponential function, with the characteristic parameters (time constant and stretch coefficient) being practically independent of the type of crown ether. The time constants of the signal decay were orders of magnitude shorter than the respective constants of the dark isomerization of the azo crown ethers, thus indicating that the process controlling the decay was a relaxation of the polymer matrix and/or a rearrangement of the flexible parts of the crowns. (C) 2007 Wiley Periodicals, Inc.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The development of new electroluminescence polymers for specific colour tuning in Polymer Light Emitting Devices (PLEDs) is currently one of the most important fields for organic electronics. This work reports a synthesis of a new electroluminescent polymer and the concomitant test as PLED emissive layer. The polymer, synthesised from fluorene, is poly(9,9`-n-dihexil-2,7-fluorenodiilvinylene-alt-2,5thiophene) or PFT The luminescence shows large bands with maxima around 480 nm in absorption and 560 nm in emission. The device was made in a three layer structure, with PEDOT:PSS as hole transport layer, PFT as emissive layer and butyl-PBD as electron transport layer. The electroluminescence spectrum shows a strong band peaked at 540 nm. For an applied voltage of 12 Volt, the brightness at normal angle of viewing is near 10 cd/m(2) and the luminous efficiency is of 0.01 lm/W. A discussion about carrier transport and the electroluminescence properties is made.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Electrostatic and hydrophobic interactions govern most of the properties of supramolecular systems, which is the reason determining the degree of ionization of macromolecules has become crucial for many applications. In this paper, we show that highresolution ultraviolet spectroscopy (VUV) can be used to determine the degree of ionization and its effect on the electronic excitation energies of layer-by-layer (LbL) films of poly(allylamine hydrochloride) (PAH) and poly[1-[4-(3-carboxy-4 hydroxyphenylazo)- benzene sulfonamido]-1,2-ethanediyl, sodium salt] (PAZO). A full assignment of the VUV peaks of these polyelectrolytes in solution and in cast or LbL films could be made, with their pH dependence allowing us to determine the p'K IND. a' using the Henderson-Hasselbach equation. The p'K IND. a' for PAZO increased from ca. 6 in solution to ca. 7.3 in LbL films owing to the charge transfer from PAH. Significantly, even using solutions at a fixed pH for PAH, the amount adsorbed on the LbL films still varied with the pH of the PAZO solutions due to these molecular-level interactions. Therefore, the procedure based on a comparison of VUV spectra from solutions and films obtained under distinct conditions is useful to determine the degree of dissociation of macromolecules, in addition to permitting interrogation of interface effects in multilayer films.