971 resultados para Polímers -- Proves
Resumo:
The concept of a biofuel cell takes inspiration from the natural capability of biological systems to catalyse the conversion of organic matter with a subsequent release of electrical energy. Enzymatic biofuel cells are intended to mimic the processes occurring in nature in a more controlled and efficient manner. Traditional fuel cells rely on the use of toxic catalysts and are often not easily miniaturizable making them unsuitable as implantable power sources. Biofuel cells however use highly selective protein catalysts and renewable fuels. As energy consumption becomes a global issue, they emerge as important tools for energy generation. The microfluidic platforms developed are intended to maximize the amount of electrical energy extracted from renewable fuels which are naturally abundant in the environment and in biological fluids. Combining microfabrication processes, chemical modification and biological surface patterning these devices are promising candidates for micro-power sources for future life science and electronic applications. This thesis considered four main aspects of a biofuel cell research. Firstly, concept of a miniature compartmentalized enzymatic biofuel cell utilizing simple fuels and operating in static conditions is verified and proves the feasibility of enzyme catalysis in energy conversion processes. Secondly, electrode and microfluidic channel study was performed through theoretical investigations of the flow and catalytic reactions which also improved understanding of the enzyme kinetics in the cell. Next, microfluidic devices were fabricated from cost-effective and disposable polymer materials, using the state-of-the-art micro-processing technologies. Integration of the individual components is difficult and multiple techniques to overcome these problems have been investigated. Electrochemical characterization of gold electrodes modified with Nanoporous Gold Structures is also performed. Finally, two strategies for enzyme patterning and encapsulation are discussed. Several protein catalysts have been effectively immobilized on the surface of commercial and microfabricated electrodes by electrochemically assisted deposition in sol-gel and poly-(o-phenylenediamine) polymer matrices and characterised with confirmed catalytic activity.
Resumo:
Accounts of the Knock Apparition, academic and devotional, always start by relating that the Virgin Mary, St Joseph, and St John the Evangelist appeared to fifteen people on a rainy Thursday evening at the south gable of Knock chapel, Co. Mayo, on 21 August 1879. They usually mention that the Land War was in progress. Despite the fact Knock supposedly receives one and a half million visitors a year, until three decades ago no scholar had examined accounts of the apparition. Recent work has sought to define the Knock Apparition in light of the Land War, the ‘devotional revolution’, which took place in Irish Catholicism in the quarter century prior to the apparition, and the influence of the parish priest, Archdeacon Bartholomew Cavanagh. This thesis acknowledges these factors, but contends that the single greatest force in shaping accounts of the apparition was Canon Ulick Joseph Bourke, one of the three priests on the commission of investigation into Knock. Furthermore, this thesis proves that Bourke’s role as a central figure in influencing the later Gaelic revival has been overlooked by scholars of cultural nationalism. By examining Bourke’s cultural nationalism and views on antiquity and language, as well as his politics and reaction to the Land War, this thesis argues that Bourke sought to create an orthodox version of the apparition which could be reconciled to his views on Irish Catholic identity, while serving as a bulwark against threats to the temporal power of the clergy. In addition to influencing accounts of the apparition through his role in interviewing the witnesses and recording their testimony, Bourke further shaped the narrative of the apparition by controlling its dissemination, to the extent that all accounts of Knock are based on a text largely created by him.
Resumo:
The spatial variability of aerosol number and mass along roads was determined in different regions (urban, rural and coastal-marine) of the Netherlands. A condensation particle counter (CPC) and an optical aerosol spectrometer (LAS-X) were installed in a van along with a global positioning system (GPS). Concentrations were measured with high-time resolutions while driving allowing investigations not possible with stationary equipment. In particular, this approach proves to be useful to identify those locations where numbers and mass attain high levels ('hot spots'). In general, concentrations of number and mass of particulate matter increase along with the degree of urbanisation, with number concentration being the more sensitive indicator. The lowest particle numbers and PM1-concentrations are encountered in a coastal and rural area: <5000cm-3 and 6μgm-3, respectively. The presence of sea-salt material along the North-Sea coast enhances PM>1-concentrations compared to inland levels. High-particle numbers are encountered on motorways correlating with traffic intensity; the largest average number concentration is measured on the ring motorway around Amsterdam: about 160000cm-3 (traffic intensity 100000vehday-1). Peak values occur in tunnels where numbers exceed 106cm-3. Enhanced PM1 levels (i.e. larger than 9μgm-3) exist on motorways, major traffic roads and in tunnels. The concentrations of PM>1 appear rather uniformly distributed (below 6μgm-3 for most observations). On the urban scale, (large) spatial variations in concentration can be explained by varying intensities of traffic and driving patterns. The highest particle numbers are measured while being in traffic congestions or when behind a heavy diesel-driven vehicle (up to 600×103cm-3). Relatively high numbers are observed during the passages of crossings and, at a decreasing rate, on main roads with much traffic, quiet streets and residential areas with limited traffic. The number concentration exhibits a larger variability than mass: the mass concentration on city roads with much traffic is 12% higher than in a residential area at the edge of the same city while the number of particles changes by a factor of two (due to the presence of the ultrafine particles (aerodynamic diameter <100nm). It is further indicated that people residing at some 100m downwind a major traffic source are exposed to (still) 40% more particles than those living in the urban background areas. © 2004 Elsevier Ltd. All rights reserved.
Resumo:
There are many bassoon competitions around the world- and one of the most famous is the Gillet competition, sponsored by the International Double Reed Society. In 1981, it was established as an annual event, the "Femand Gillet Bassoon Competition"- a title expanded in 2000 to the "Femand Gillet-Hugo Fox Bassoon Competition." My goal was to explore the history of the competition, the availability of the repertoire selected for each competition, and the difficulties performing each piece. Through this journey, I was able to discover the variety of material chosen and how it was used, the quality, value, and the importance of the repertoire in each competition. For example, Ferdinand David's Concertino op.12, the style of the piece provides romantic, operatic type lyricism, a flashy presto section and finale, makes it as a standard romantic piece in the bassoon repertoire; Otmar Nussio's Variations on an Air by Pergolesi, contains a slow theme and few diverse variations, which provides a contemporary style music with the traditional music form and descriptive quality. The result of learning this repertoire proves that different styles of music in the competition demonstrate the artistry of the bassoon repertoire and music history in relationship of the development of the instrument. My first dissertation recital featured: Concerto for Bassoon, K. 191 by Wolfgang Amadeus Mozart; Concertino by Marcel Bitsch; Metamorphoses by Leslie Bassett; and Sonatine by Alexandre Tansman. My second recital featured: Concerto in E minor, RV 484 by Antonio Vivaldi; On the Summer Map of Stars by Gordon Kerry; Concertino Opus12 by Ferdinand David; Elegie by Jacques Hetu; and Interferences by Roger Boutry. My third recital featured: Cello Suite No.2 in D minor, BWV1008 by Johann Sebastian Bach; Combinaciones: Sonatina para Fagot y Piano by Salvador Ranieri; Andante e Rondo Ungarese Opus 35 by Carl Maria von Weber; and Variations on an Air by Pergolesi for Bassoon and Piano by Otmar Nussio.
Resumo:
A particle swarm optimisation approach is used to determine the accuracy and experimental relevance of six disparate cure kinetics models. The cure processes of two commercially available thermosetting polymer materials utilised in microelectronics manufacturing applications have been studied using a differential scanning calorimetry system. Numerical models have been fitted to the experimental data using a particle swarm optimisation algorithm which enables the ultimate accuracy of each of the models to be determined. The particle swarm optimisation approach to model fitting proves to be relatively rapid and effective in determining the optimal coefficient set for the cure kinetics models. Results indicate that the singlestep autocatalytic model is able to represent the curing process more accurately than more complex model, with ultimate accuracy likely to be limited by inaccuracies in the processing of the experimental data.
Resumo:
The problems of relating the results of experiments in the laboratory to events in nature are twofold: to equate the response to a single variable (hydrocarbons) with the natural variability in the biological material in a multivariate environment, and to consider whether the response established experimentally has any relevance to the animal's chances of survival and reproduction (i.e. its fitness) in the natural population. Recent studies of the effects of petroleum hydrocarbons on marine invertebrates are reviewed, with an emphasis on the physiological and cytochemical responses by bivalve molluscs. The dose-response relations that emerge suggest the intensity of the 'signal' that must be detected in nature if the chronic, sublethal effects of petroleum pollution are to be measured. The natural variability in these physiological and cytochemical processes are then reviewed and the main causes of variability in natural populations, both endogenous and exogenous, discussed. These results indicate the extent of the `noise' above which the signal from possible pollution effects must be detected. The results from recent field studies on the common mussel, Mytilus edulis, are discussed. The results are as complex as expected, but it proves possible to reduce the variance in the measured responses so that pollution effects, including those due to hydrocarbons, can be detected. The ecological consequences of the observed effects of petroleum hydrocarbons are then discussed in terms of reproductive effort and reproductive value. Considerable variation between populations exists here also and this can be used to help in the interpretation of the extent of the impact of the environment on the ecology of the population. The result is to place the findings of the laboratory experiments in an ecological context of natural variability and of the physiological costs of adaptation.
Resumo:
We show in this study that the combination of a swirl flow reactor and an antimicrobial agent (in this case copper alginate beads) is a promising technique for the remediation of contaminated water in waste streams recalcitrant to UV-C treatment. This is demonstrated by comparing the viability of both common and UV-C resistant organisms in operating conditions where UV-C proves ineffective - notably high levels of solids and compounds which deflect UV-C. The swirl flow reactor is easy to construct from commonly available plumbing parts and may prove a versatile and powerful tool in waste water treatment in developing countries.
Resumo:
Fac-ruthenium(II) tris-(5-carboxy-2,2'-bipyridine) has been synthesised as a single geometric isomer for the first time, and proves to be a good "building-block" to introduce new functionality with retention of the isomeric integrity.
Resumo:
We study the structural effects produced by the quantization of vibrational degrees of freedom in periodic crystals at zero temperature. To this end we introduce a methodology based on mapping a suitable subspace of the vibrational manifold and solving the Schrödinger equation in it. A number of increasingly accurate approximations ranging from the quasiharmonic approximation (QHA) to the vibrational self-consistent field (VSCF) method and the exact solution are described. A thorough analysis of the approximations is presented for model monatomic and hydrogen-bonded chains, and results are presented for a linear H-F chain where the potential-energy surface is obtained via first-principles electronic structure calculations. We focus on quantum nuclear effects on the lattice constant and show that the VSCF is an excellent approximation, meaning that correlation between modes is not extremely important. The QHA is excellent for covalently bonded mildly anharmonic systems, but it fails for hydrogen-bonded ones. In the latter, the zero-point energy exhibits a nonanalytic behavior at the lattice constant where the H atoms center, which leads to a spurious secondary minimum in the quantum-corrected energy curve. An inexpensive anharmonic approximation of noninteracting modes appears to produce rather good results for hydrogen-bonded chains for small system sizes. However, it converges to the incorrect QHA results for increasing size. Isotope effects are studied for the first-principles H-F chain. We show how the lattice constant and the H-F distance increase with decreasing mass and how the QHA proves to be insufficient to reproduce this behavior.
Resumo:
Quantification of nanoparticles in biological systems (i.e., cells, tissues and organs) is becoming a vital part of nanotoxicological and nanomedical fields. Dose is a key parameter when assessing behavior and any potential risk of nanomaterials. Various techniques for nanoparticle quantification in cells and tissues already exist but will need further development in order to make measurements reliable, reproducible and intercomparable between different techniques. Microscopy allows detection and location of nanoparticles in cells and has been used extensively in recent years to characterize nanoparticles and their pathways in living systems. Besides microscopical techniques (light microscopy and electron microscopy mainly), analytical techniques such as mass spectrometry, an established technique in trace element analysis, have been used in nanoparticle research. Other techniques require 'labeled particles, fluorescently, radioactively or magnetically. However, these techniques lack spatial resolution and subcellular localization is not possible. To date, only electron microscopy offers the resolving power to determine accumulation of nanoparticles in cells due to its ability to image particles individually. So-called super-resolution light microscopy techniques are emerging to provide sufficient resolution on the light microscopy level to image or 'see particles as individual particles. Nevertheless, all microscopy techniques require statistically sound sampling strategies in order to provide quantitative results. Stereology is a well-known sampling technique in various areas and, in combination with electron microscopy, proves highly successful with regard to quantification of nanoparticle uptake by cells. © 2010 Future Medicine Ltd.
Resumo:
A two-dimensional mathematical model for evaluating the simultaneous heat and moisture migration in porous building materials was proposed. Vapor content and temperature were chosen as the principal driving potentials. The numerical solution was based on the control volume finite difference technique with fully implicit scheme in time. Two validation experiments were developed in this study. The evolution of transient moisture distributions in both one-dimensional and two-dimensional cases was measured. A comparison between experimental results and those obtained by the numerical model proves that they are fully consistent with each other. The model can be easily integrated into a whole building heat, air and moisture transfer model. Another main advantage of the present numerical method lies in the fact that the required moisture transport properties are comparatively simple and easy to determine.
Resumo:
In this paper the use of eigenvalue stability analysis of very large dimension aeroelastic numerical models arising from the exploitation of computational fluid dynamics is reviewed. A formulation based on a block reduction of the system Jacobian proves powerful to allow various numerical algorithms to be exploited, including frequency domain solvers, reconstruction of a term describing the fluid–structure interaction from the sparse data which incurs the main computational cost, and sampling to place the expensive samples where they are most needed. The stability formulation also allows non-deterministic analysis to be carried out very efficiently through the use of an approximate Newton solver. Finally, the system eigenvectors are exploited to produce nonlinear and parameterised reduced order models for computing limit cycle responses. The performance of the methods is illustrated with results from a number of academic and large dimension aircraft test cases.
Resumo:
This study provides a general diversity analysis for joint complex diversity coding (CDC) and channel coding-based space-time-frequency codeing is provided. The mapping designs from channel coding to CDC are crucial for efficient exploitation of the diversity potential. This study provides and proves a sufficient condition of full diversity construction with joint three-dimensional CDC and channel coding, bit-interleaved coded complex diversity coding and symbol-interleaved coded complex diversity coding. Both non-iterative and iterative detections of joint channel code and CDC transmission are investigated. The proposed minimum mean-square error-based iterative soft decoding achieves the performance of the soft sphere decoding with reduced complexity.
Resumo:
Detection of growth-promoter use in animal production systems still proves to be an analytical challenge despite years of activity in the field. This study reports on the capability of NMR metabolomic profiling techniques to discriminate between plasma samples obtained from cattle treated with different groups of growth-promoting hormones (dexamethasone, prednisolone, oestradiol) based on recorded metabolite profiles. Two methods of NMR analysis were investigated—a Carr–Purcell–Meiboom–Gill (CPMG)-pulse sequence technique and a conventional 1H NMR method using pre-extracted plasma. Using the CPMG method, 17 distinct metabolites could be identified from the spectra. 1H NMR analysis of extracted plasma facilitated identification of 23 metabolites—six more than the alternative method and all within the aromatic region. Multivariate statistical analysis of acquired data from both forms of NMR analysis separated the plasma metabolite profiles into distinct sample cluster sets representative of the different animal study groups. Samples from both sets of corticosteroid-treated animals—dexamethasone and prednisolone—were found to be clustered relatively closely and had similar alterations to identified metabolite panels. Distinctive metabolite profiles, different from those observed within plasma from corticosteroid-treated animal plasma, were observed in oestradiol-treated animals and samples from these animals formed a cluster spatially isolated from control animal plasma samples. These findings suggest the potential use of NMR methodologies of plasma metabolite analysis as a high-throughput screening technique to aid detection of growth promoter use.
Resumo:
This paper presents a novel detection method for broken rotor bar fault (BRB) in induction motors based on Estimation of Signal Parameters via Rotational Invariance Technique (ESPRIT) and Simulated Annealing Algorithm (SAA). The performance of ESPRIT is tested with simulated stator current signal of an induction motor with BRB. It shows that even with a short-time measurement data, the technique is capable of correctly identifying the frequencies of the BRB characteristic components but with a low accuracy on the amplitudes and initial phases of those components. SAA is then used to determine their amplitudes and initial phases and shows satisfactory results. Finally, experiments on a 3kW, 380V, 50Hz induction motor are conducted to demonstrate the effectiveness of the ESPRIT-SAA-based method in detecting BRB with short-time measurement data. It proves that the proposed method is a promising choice for BRB detection in induction motors operating with small slip and fluctuant load.