944 resultados para Plug-filling
Resumo:
My thesis examines fine-scale habitat use and movement patterns of age 1 Greenland cod (Gadus macrocephalus ogac) tracked using acoustic telemetry. Recent advances in tracking technologies such as GPS and acoustic telemetry have led to increasingly large and detailed datasets that present new opportunities for researchers to address fine-scale ecological questions regarding animal movement and spatial distribution. There is a growing demand for home range models that will not only work with massive quantities of autocorrelated data, but that can also exploit the added detail inherent in these high-resolution datasets. Most published home range studies use radio-telemetry or satellite data from terrestrial mammals or avian species, and most studies that evaluate the relative performance of home range models use simulated data. In Chapter 2, I used actual field-collected data from age-1 Greenland cod tracked with acoustic telemetry to evaluate the accuracy and precision of six home range models: minimum convex polygons, kernel densities with plug-in bandwidth selection and the reference bandwidth, adaptive local convex hulls, Brownian bridges, and dynamic Brownian bridges. I then applied the most appropriate model to two years (2010-2012) of tracking data collected from 82 tagged Greenland cod tracked in Newman Sound, Newfoundland, Canada, to determine diel and seasonal differences in habitat use and movement patterns (Chapter 3). Little is known of juvenile cod ecology, so resolving these relationships will provide valuable insight into activity patterns, habitat use, and predator-prey dynamics, while filling a knowledge gap regarding the use of space by age 1 Greenland cod in a coastal nursery habitat. By doing so, my thesis demonstrates an appropriate technique for modelling the spatial use of fish from acoustic telemetry data that can be applied to high-resolution, high-frequency tracking datasets collected from mobile organisms in any environment.
Resumo:
Strain-free epitaxial quantum dots (QDs) are fabricated by a combination of Al local droplet etching (LDE) of nanoholes in AlGaAs surfaces and subsequent hole filling with GaAs. The whole process is performed in a conventional molecular beam epitaxy (MBE) chamber. Autocorrelation measurements establish single-photon emission from LDE QDs with a very small correlation function g (2)(0)≃ 0.01 of the exciton emission. Here, we focus on the influence of the initial hole depth on the QD optical properties with the goal to create deep holes suited for filling with more complex nanostructures like quantum dot molecules (QDM). The depth of droplet etched nanoholes is controlled by the droplet material coverage and the process temperature, where a higher coverage or temperature yields deeper holes. The requirements of high quantum dot uniformity and narrow luminescence linewidth, which are often found in applications, set limits to the process temperature. At high temperatures, the hole depths become inhomogeneous and the linewidth rapidly increases beyond 640 °C. With the present process technique, we identify an upper limit of 40-nm hole depth if the linewidth has to remain below 100 μeV. Furthermore, we study the exciton fine-structure splitting which is increased from 4.6 μeV in 15-nm-deep to 7.9 μeV in 35-nm-deep holes. As an example for the functionalization of deep nanoholes, self-aligned vertically stacked GaAs QD pairs are fabricated by filling of holes with 35 nm depth. Exciton peaks from stacked dots show linewidths below 100 μeV which is close to that from single QDs.
Resumo:
With the quick advance of web service technologies, end-users can conduct various on-line tasks, such as shopping on-line. Usually, end-users compose a set of services to accomplish a task, and need to enter values to services to invoke the composite services. Quite often, users re-visit websites and use services to perform re-occurring tasks. The users are required to enter the same information into various web services to accomplish such re-occurring tasks. However, repetitively typing the same information into services is a tedious job for end-users. It can negatively impact user experience when an end-user needs to type the re-occurring information repetitively into web services. Recent studies have proposed several approaches to help users fill in values to services automatically. However, prior studies mainly suffer the following drawbacks: (1) limited support of collecting and analyzing user inputs; (2) poor accuracy of filling values to services; (3) not designed for service composition. To overcome the aforementioned drawbacks, we need maximize the reuse of previous user inputs across services and end-users. In this thesis, we introduce our approaches that prevent end-users from entering the same information into repetitive on-line tasks. More specifically, we improve the process of filling out services in the following 4 aspects: First, we investigate the characteristics of input parameters. We propose an ontology-based approach to automatically categorize parameters and fill values to the categorized input parameters. Second, we propose a comprehensive framework that leverages user contexts and usage patterns into the process of filling values to services. Third, we propose an approach for maximizing the value propagation among services and end-users by linking a set of semantically related parameters together and similar end-users. Last, we propose a ranking-based framework that ranks a list of previous user inputs for an input parameter to save a user from unnecessary data entries. Our framework learns and analyzes interactions of user inputs and input parameters to rank user inputs for input parameters under different contexts.
Resumo:
The Central Highlands region has a unique climate that presents both challenges and novel farming systems opportunities for cotton production. We have been re-examining the Emerald climate in a bid to identify opportunities that might enable the production of more consistent cotton yields and quality in what can be a highly variable climate. A detailed climatic analysis identified that spring and early summer is the most optimal period for boll growth and maturation. However, to unlock this potential requires unseasonal winter sowing that is 4 to 6 weeks earlier than the traditional mid-September sowing. Our experiments have sought answers to two questions: i) how much earlier can cotton be sown for reliable crop establishment and high yield; ii) can degradable plastic film mulches minimise the impact of potentially cold temperatures on crop establishment and early vigour. Initial data suggests August sowing offers the potential to grow a high yield at a time of year with reduced risk of cloud and high night temperatures during boll growth. For the past two seasons late winter sowing (with and without film) has resulted in a compact plant with high retention that physiologically matures by the beginning of January. Even with the spectre of replanting cotton in some seasons due to frost in August, early sowing would appear to offer the opportunity for more efficient crop input usage, simplified agronomic management and new crop rotation options during late summer and autumn. This talk will present an overview of results to date.
Resumo:
Se ha diseñado una aplicación móvil que permite examinar el riesgo de melanoma mediante el análisis de una foto. La memoria documenta la realización de una aplicación de servidor que forma parte de una solución de eHealth con un cliente ya desarrollado por un proyecto previo de fin de carrera en forma de una aplicación Android. La aplicación de servidor desarrollada expone una API de servicios web REST y presenta una arquitectura extensible dinámicamente mediante la implementación de un patrón plug-in.
Resumo:
Tutkittu yritys on suomalainen maaleja ja lakkoja kansainvälisesti valmistava ja myyvä toimija. Yrityksessä otettiin vuonna 2010 käyttöön uudet tuotannon ja toimitusketjun tavoitteet ja suunnitelmat ja tämä tutkimus on osa tuota kokonaisvaltaista kehittämissuuntaa. Tutkimuksessa käsitellään tuotannon ja kunnossapidon tehokkuuden parantamis- ja mittaustyökalu OEE:tä ja tuotevaihtoaikojen pienentämiseen tarkoitettua SMED -työkalua. Työn teoriaosuus perustuu lähinnä akateemisiin julkaisuihin, mutta myös haastatteluihin, kirjoihin, internet sivuihin ja yhteen vuosikertomukseen. Empiriaosuudessa OEE:n käyttöönoton ongelmia ja onnistumista tutkittiin toistettavalla käyttäjäkyselyllä. OEE:n potentiaalia ja käyttöönottoa tutkittiin myös tarkastelemalla tuotanto- ja käytettävyysdataa, jota oli kerätty tuotantolinjalta. SMED:iä tutkittiin siihen perustuvan tietokoneohjelman avulla. SMED:iä tutkittiin teoreettisella tasolla, eikä sitä implementoitu vielä käytäntöön. Tutkimustuloksien mukaan OEE ja SMED sopivat hyvin esimerkkiyritykselle ja niissä on paljon potentiaalia. OEE ei ainoastaan paljasta käytettävyyshäviöiden määrää, mutta myös niiden rakenteen. OEE -tulosten avulla yritys voi suunnata rajalliset tuotannon ja kunnossapidon parantamisen resurssit oikeisiin paikkoihin. Työssä käsiteltävä tuotantolinja ei tuottanut mitään 56 % kaikesta suunnitellusta tuotantoajasta huhtikuussa 2016. Linjan pysähdyksistä ajallisesti 44 % johtui vaihto-, aloitus- tai lopetustöistä. Tuloksista voidaan päätellä, että käytettävyyshäviöt ovat vakava ongelma yrityksen tuotannontehokkuudessa ja vaihtotöiden vähentäminen on tärkeä kehityskohde. Vaihtoaikaa voitaisiin vähentää ~15 % yksinkertaisilla ja halvoilla SMED:illä löydetyillä muutoksilla työjärjestyksessä ja työkaluissa. Parannus olisi vielä suurempi kattavimmilla muutoksilla. SMED:in suurin potentiaali ei välttämättä ole vaihtoaikojen lyhentämisessä vaan niiden standardisoinnissa.
Resumo:
The primary goal of systems biology is to integrate complex omics data, and data obtained from traditional experimental studies in order to provide a holistic understanding of organismal function. One way of achieving this aim is to generate genome-scale metabolic models (GEMs), which contain information on all metabolites, enzyme-coding genes, and biochemical reactions in a biological system. Drosophila melanogaster GEM has not been reconstructed to date. Constraint-free genome-wide metabolic model of the fruit fly has been reconstructed in our lab, identifying gaps, where no enzyme was identified and metabolites were either only produced or consume. The main focus of the work presented in this thesis was to develop a pipeline for efficient gap filling using metabolomics approaches combined with standard reverse genetics methods, using 5-hydroxyisourate hydrolase (5-HIUH) as an example. 5-HIUH plays a role in urate degradation pathway. Inability to degrade urate can lead to inborn errors of metabolism (IEMs) in humans, including hyperuricemia. Based on sequence analysis Drosophila CG30016 gene was hypothesised to encode 5- HIUH. CG30016 knockout flies were examined to identify Malpighian tubules phenotype, and shortened lifespan might reflect kidney disorders in hyperuricemia in humans. Moreover, LC-MS analysis of mutant tubules revealed that CG30016 is involved in purine metabolism, and specifically urate degradation pathway. However, the exact role of the gene has not been identified, and the complete method for gap filling has not been developed. Nevertheless, thanks to the work presented here, we are a step closer towards the development of a gap-filling pipeline in Drosophila melanogaster GEM. Importantly, the areas that require further optimisation were identified and are the focus of future research. Moreover, LC-MS analysis confirmed that tubules rather than the whole fly were more suitable for metabolomics analysis of purine metabolism. Previously, Dow/Davies lab has generated the most complete tissue-specific transcriptomic atlas for Drosophila – FlyAtlas.org, which provides data on gene expression across multiple tissues of adult fly and larva. FlyAtlas revealed that transcripts of many genes are enriched in specific Drosophila tissues, and that it is possible to deduce the functions of individual tissues within the fly. Based on FlyAtlas data, it has become clear that the fly (like other metazoan species) must be considered as a set of tissues, each 2 with its own distinct transcriptional and functional profile. Moreover, it revealed that for about 30% of the genome, reverse genetic methods (i.e. mutation in an unknown gene followed by observation of phenotype) are only useful if specific tissues are investigated. Based on the FlyAtlas findings, we aimed to build a primary tissue-specific metabolome of the fruit fly, in order to establish whether different Drosophila tissues have different metabolomes and if they correspond to tissue-specific transcriptome of the fruit fly (FlyAtlas.org). Different fly tissues have been dissected and their metabolome elucidated using LC-MS. The results confirmed that tissue metabolomes differ significantly from each other and from the whole fly, and that some of these differences can be correlated to the tissue function. The results illustrate the need to study individual tissues as well as the whole organism. It is clear that some metabolites that play an important role in a given tissue might not be detected in the whole fly sample because their abundance is much lower in comparison to other metabolites present in all tissues, which prevent the detection of the tissue-specific compound.
Resumo:
Análisis mediante CFD y validación experimental de un sistema de carga para un motor Stirling. Validado y analizado experimentalmente en un motor de 5 pistones de doble acción.
Resumo:
Harmonic distortion on voltages and currents increases with the increased penetration of Plug-in Electric Vehicle (PEV) loads in distribution systems. Wind Generators (WGs), which are source of harmonic currents, have some common harmonic profiles with PEVs. Thus, WGs can be utilized in careful ways to subside the effect of PEVs on harmonic distortion. This work studies the impact of PEVs on harmonic distortions and integration of WGs to reduce it. A decoupled harmonic three-phase unbalanced distribution system model is developed in OpenDSS, where PEVs and WGs are represented by harmonic current loads and sources respectively. The developed model is first used to solve harmonic power flow on IEEE 34-bus distribution system with low, moderate, and high penetration of PEVs, and its impact on current/voltage Total Harmonic Distortions (THDs) is studied. This study shows that the voltage and current THDs could be increased upto 9.5% and 50% respectively, in case of distribution systems with high PEV penetration and these THD values are significantly larger than the limits prescribed by the IEEE standards. Next, carefully sized WGs are selected at different locations in the 34-bus distribution system to demonstrate reduction in the current/voltage THDs. In this work, a framework is also developed to find optimal size of WGs to reduce THDs below prescribed operational limits in distribution circuits with PEV loads. The optimization framework is implemented in MATLAB using Genetic Algorithm, which is interfaced with the harmonic power flow model developed in OpenDSS. The developed framework is used to find optimal size of WGs on the 34-bus distribution system with low, moderate, and high penetration of PEVs, with an objective to reduce voltage/current THD deviations throughout the distribution circuits. With the optimal size of WGs in distribution systems with PEV loads, the current and voltage THDs are reduced below 5% and 7% respectively, which are within the limits prescribed by IEEE.
Resumo:
Two key solutions to reduce the greenhouse gas emissions and increase the overall energy efficiency are to maximize the utilization of renewable energy resources (RERs) to generate energy for load consumption and to shift to low or zero emission plug-in electric vehicles (PEVs) for transportation. The present U.S. aging and overburdened power grid infrastructure is under a tremendous pressure to handle the issues involved in penetration of RERS and PEVs. The future power grid should be designed with for the effective utilization of distributed RERs and distributed generations to intelligently respond to varying customer demand including PEVs with high level of security, stability and reliability. This dissertation develops and verifies such a hybrid AC-DC power system. The system will operate in a distributed manner incorporating multiple components in both AC and DC styles and work in both grid-connected and islanding modes. ^ The verification was performed on a laboratory-based hybrid AC-DC power system testbed as hardware/software platform. In this system, RERs emulators together with their maximum power point tracking technology and power electronics converters were designed to test different energy harvesting algorithms. The Energy storage devices including lithium-ion batteries and ultra-capacitors were used to optimize the performance of the hybrid power system. A lithium-ion battery smart energy management system with thermal and state of charge self-balancing was proposed to protect the energy storage system. A grid connected DC PEVs parking garage emulator, with five lithium-ion batteries was also designed with the smart charging functions that can emulate the future vehicle-to-grid (V2G), vehicle-to-vehicle (V2V) and vehicle-to-house (V2H) services. This includes grid voltage and frequency regulations, spinning reserves, micro grid islanding detection and energy resource support. ^ The results show successful integration of the developed techniques for control and energy management of future hybrid AC-DC power systems with high penetration of RERs and PEVs.^
Resumo:
This CPM project focuses on the document approval process that the Division of State Human Resources consulting team utilizes as it relates to classification and compensation requests, e.g. job reclassifications, PD update requests, and salary requests. The ultimate goal is to become more efficient by utilizing electronic signatures and electronic form filling to streamline the current process of document approvals.
Resumo:
This master thesis work is focused on the development of a predictive EHC control function for a diesel plug-in hybrid electric vehicle equipped with a EURO 7 compliant exhaust aftertreatment system (EATS), with the purpose of showing the advantages provided by the implementation of a predictive control strategy with respect to a rule-based one. A preliminary step will be the definition of an accurate powertrain and EATS physical model, starting from already existing and validated applications. Then, a rule-based control strategy managing the torque split between the electric motor (EM) and the internal combustion engine (ICE) will be developed and calibrated, with the main target of limiting tailpipe NOx emission by taking into account EM and ICE operating conditions together with EATS conversion efficiency. The information available from vehicle connectivity will be used to reconstruct the future driving scenario, also referred to as electronic horizon (eHorizon), and in particular to predict ICE first start. Based on this knowledge, an EATS pre-heating phase can be planned to avoid low pollutant conversion efficiencies, thus preventing high NOx emission due to engine cold start. Consequently, the final NOx emission over the complete driving cycle will be strongly reduced, allowing to comply with the limits potentially set by the incoming EURO 7 regulation. Moreover, given the same NOx emission target, the gain achieved thanks to the implementation of an EHC predictive control function will allow to consider a simplified EATS layout, thus reducing the related manufacturing cost. The promising results achieved in terms of NOx emission reduction show the effectiveness of the application of a predictive control strategy focused on EATS thermal management and highlight the potential of a complete integration and parallel development of involved vehicle physical systems, control software and connectivity data management.