939 resultados para Platelet adhesion


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The attachment of Escherichia coli ATCC 25922 and Staphylococcus aureus ATCC 28213 onto six different materials used to manufacture dental implant abutments was quantitatively determined after 2 and 24 h of contact between the materials and the bacterial cultures. The materials were topographically characterized and their wettability determined, with both parameters subsequently related to bacterial adhesion. Atomic force microscopy, interferometry, and contact angle measurement were used to characterize the materials" surfaces. The results showed that neither roughness nor nano-roughness greatly influenced bacterial attachment whereas wettability strongly correlated with adhesion. After 2 h the degree of E. coli attachment markedly differed depending on the material whereas similar differences were not observed for S. aureus, which yielded consistently higher counts of adhered cells. Nevertheless, after 24 h the adhesion of the two species to the different test materials no longer significantly differed, although on all surfaces the numbers of finally adhered E. coli were higher than those of S. aureus

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Children with Wiskott-Aldrich syndrome (WAS) are often first diagnosed with immune thrombocytopenia (ITP), potentially leading to both inappropriate treatment and the delay of life-saving definitive therapy. WAS is traditionally differentiated from ITP based on the small size of WAS platelets. In practice, microthrombocytopenia is often not present or not appreciated in children with WAS. To develop an alternative method of differentiating WAS from ITP, we retrospectively reviewed all complete blood counts and measurements of immature platelet fraction (IPF) in 18 subjects with WAS and 38 subjects with a diagnosis of ITP treated at our hospital. Examination of peripheral blood smears revealed a wide range of platelet sizes in subjects with WAS. Mean platelet volume (MPV) was not reported in 26% of subjects, and subjects in whom MPV was not reported had lower platelet counts than did subjects in whom MPV was reported. Subjects with WAS had a lower IPF than would be expected for their level of thrombocytopenia, and the IPF in subjects with WAS was significantly lower than in subjects with a diagnosis of ITP. Using logistic regression, we developed and validated a rule based on platelet count and IPF that was more sensitive for the diagnosis of WAS than was the MPV, and was applicable regardless of the level of platelets or the availability of the MPV. Our observations demonstrate that MPV is often not available in severely thrombocytopenic subjects, which may hinder the diagnosis of WAS. In addition, subjects with WAS have a low IPF, which is consistent with the notion that a platelet production defect contributes to the thrombocytopenia of WAS. Knowledge of this detail of WAS pathophysiology allows to differentiate WAS from ITP with increased sensitivity, thereby allowing a physician to spare children with WAS from inappropriate treatment, and make definitive therapy available in a timely manner.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND: Lymphedema is an underdiagnosed pathology which in industrialized countries mainly affects cancer patients that underwent lymph node dissection and/or radiation. Currently no effective therapy is available so that patients' life quality is compromised by swellings of the concerned body region. This unfortunate condition is associated with body imbalance and subsequent osteochondral deformations and impaired function as well as with an increased risk of potentially life threatening soft tissue infections. METHODS: The effects of PRP and ASC on angiogenesis (anti-CD31 staining), microcirculation (Laser Doppler Imaging), lymphangiogenesis (anti-LYVE1 staining), microvascular architecture (corrosion casting) and wound healing (digital planimetry) are studied in a murine tail lymphedema model. RESULTS: Wounds treated by PRP and ASC healed faster and showed a significantly increased epithelialization mainly from the proximal wound margin. The application of PRP induced a significantly increased lymphangiogenesis while the application of ASC did not induce any significant change in this regard. CONCLUSIONS: PRP and ASC affect lymphangiogenesis and lymphedema development and might represent a promising approach to improve regeneration of lymphatic vessels, restore disrupted lymphatic circulation and treat or prevent lymphedema alone or in combination with currently available lymphedema therapies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: Few clinical studies have focused on the alcoholindependent cardiovascular effects of the phenolic compounds of red wine (RW). Objective: We aimed to evaluate the effects of ethanol and phenolic compounds of RW on the expression of inflammatory biomarkers related to atherosclerosis in subjects at high risk of cardiovascular disease. Design: Sixty-seven high-risk, male volunteers were included in a randomized, crossover consumption trial. After a washout period, all subjects received RW (30 g alcohol/d), the equivalent amount of dealcoholized red wine (DRW), or gin (30 g alcohol/d) for 4 wk. Before and after each intervention period, 7 cellular and 18 serum inflammatory biomarkers were evaluated. Results: Alcohol increased IL-10 and decreased macrophage-derived chemokine concentrations, whereas the phenolic compounds of RW decreased serum concentrations of intercellular adhesion molecule- 1, E-selectin, and IL-6 and inhibited the expression of lymphocyte function-associated antigen 1 in T lymphocytes and macrophage-1 receptor, Sialil-Lewis X, and C-C chemokine receptor type 2 expression in monocytes. Both ethanol and phenolic compounds of RW downregulated serum concentrations of CD40 antigen, CD40 ligand, IL-16, monocyte chemotactic protein-1, and vascular cell adhesion molecule-1. Conclusion: The results suggest that the phenolic content of RW may modulate leukocyte adhesion molecules, whereas both ethanol and polyphenols of RW may modulate soluble inflammatory mediators in high-risk patients. The trial was registered in the International Standard Randomized Controlled Trial Number Register at http://www. isrctn.org/ as ISRCTN88720134

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: Few clinical studies have focused on the alcoholindependent cardiovascular effects of the phenolic compounds of red wine (RW). Objective: We aimed to evaluate the effects of ethanol and phenolic compounds of RW on the expression of inflammatory biomarkers related to atherosclerosis in subjects at high risk of cardiovascular disease. Design: Sixty-seven high-risk, male volunteers were included in a randomized, crossover consumption trial. After a washout period, all subjects received RW (30 g alcohol/d), the equivalent amount of dealcoholized red wine (DRW), or gin (30 g alcohol/d) for 4 wk. Before and after each intervention period, 7 cellular and 18 serum inflammatory biomarkers were evaluated. Results: Alcohol increased IL-10 and decreased macrophage-derived chemokine concentrations, whereas the phenolic compounds of RW decreased serum concentrations of intercellular adhesion molecule- 1, E-selectin, and IL-6 and inhibited the expression of lymphocyte function-associated antigen 1 in T lymphocytes and macrophage-1 receptor, Sialil-Lewis X, and C-C chemokine receptor type 2 expression in monocytes. Both ethanol and phenolic compounds of RW downregulated serum concentrations of CD40 antigen, CD40 ligand, IL-16, monocyte chemotactic protein-1, and vascular cell adhesion molecule-1. Conclusion: The results suggest that the phenolic content of RW may modulate leukocyte adhesion molecules, whereas both ethanol and polyphenols of RW may modulate soluble inflammatory mediators in high-risk patients. The trial was registered in the International Standard Randomized Controlled Trial Number Register at http://www. isrctn.org/ as ISRCTN88720134

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Reggies/flotillins are implicated in trafficking of membrane proteins to their target sites and in the regulation of the Rab11a-dependent targeted recycling of E-cadherin to adherens junctions (AJs). Here we demonstrate a function of reggies in focal adhesion (FA) formation and α5- and β1-integrin recycling to FAs. Downregulation of reggie-1 in HeLa and A431 cells by siRNA and shRNA increased the number of FAs, impaired their distribution and modified FA turnover. This was coupled to enhanced focal adhesion kinase (FAK) and Rac1 signaling and gain in plasma membrane motility. Wild type and constitutively-active (CA) Rab11a rescued the phenotype (normal number of FAs) whereas dominant-negative (DN) Rab11a mimicked the loss-of-reggie phenotype in control cells. That reggie-1 affects integrin trafficking emerged from the faster loss of internalized antibody-labeled β1-integrin in reggie-deficient cells. Moreover, live imaging using TIRF microscopy revealed vesicles containing reggie-1 and α5- or β1-integrin, trafficking close to the substrate-near membrane and making kiss-and-run contacts with FAs. Thus, reggie-1 in interaction with Rab11a controls Rac1 and FAK activation and coordinates the targeted recycling of α5- and β1-integrins to FAs to regulate FA formation and membrane dynamics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

RGD peptide sequences are known to regulate cellular activities by interacting with α5β1, αvβ5 and αvβ3 integrin, which contributes to the wound healing process. In this study, RGDC peptide was immobilized onto chitosan derivative 1,6-diaminohexane-O-carboxymethyl-N,N,N-trimethyl chitosan (DAH-CMTMC) to display RGDC-promoting adhesion for enhanced wound healing. The efficiency of N-methylation, O-carboxymethylation and spacer grafting was quantitatively and qualitatively analyzed by (1)H NMR and FTIR, yielding 0.38 degree of substitution for N-methylation and >0.85 for O-carboxymethylation. The glass transition temperatures for chitosan derivatives were also studied. Peptide immobilization was achieved through sulfhydryl groups using sulfosuccinimidyl (4-iodoacetyl)amino-benzoate (sulfo-SIAB method). RGDC immobilized peptide onto DAH-CMTMC was found to be about 15.3μg/mg of chitosan derivative by amino acid analysis (AAA). The significant increase of human dermal fibroblast (HDF) viability in vitro over 7 days suggests that RGDC-functionalized chitosan may lead to enhanced wound healing (viability >140%). Moreover, bio-adhesion and proliferation assays confirmed that coatings of RGDC-functionalized chitosan derivatives exhibit in vitro wound healing properties by enhancing fibroblast proliferation and adhesion. These results showed that RGDC peptide-functionalized chitosan provides an optimal environment for fibroblast adhesion and proliferation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Polar flagellin proteins from Aeromonas hydrophila strain AH-3 (serotype O34) were found to be O-glycosylated with a heterogeneous heptasaccharide glycan. Two mutants with altered (light and strong) polar flagella glycosylation still able to produce flagella were previously obtained, as well as mutants lacking the O34-antigen lipopolysaccharide (LPS) but with unaltered polar flagella glycosylation. We compared these mutants, altogether with the wild type strain, in different studies to conclude that polar flagella glycosylation is extremely important for A. hydrophila adhesion to Hep-2 cells and biofilm formation. Furthermore, the polar flagella glycosylation is an important factor for the immune stimulation of IL-8 production via toll receptor 5 (TLR5).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Protein tyrosine phosphorylation controls a wide array of cellular responses such as growth, migration, proliferation, differentiation, metabolism and cytoskeletal organisation. Tyrosine phosphorylation is a dynamic process involving the competing activities of protein tyrosine kinases and protein tyrosine phosphatases. The protein tyrosine kinases are further divided into non-receptor- and receptor tyrosine kinases. The latter are transmembrane glycoproteins activated by the binding of specific ligands, mostly growth factors, to their extracellular domain, transmitting different signals to the cell. Growth factor receptors such as the epidermal growth factor receptor, vascular endothelial growth factor receptor 2 and platelet-derived growth factor receptor β, belong to the receptor tyrosine kinases, the signalling of which is often disturbed in various diseases, including cancer. This has led to the development of receptor tyrosine kinase antagonists for use as anti-cancer drugs. As the receptor tyrosine kinases, also the protein tyrosine phosphatases can be divided into receptor- and non-receptor types. The protein tyrosine phosphatases have attained much less attention than the receptor tyrosine kinases partly because they were identified later. However, accumulating evidence shows that the protein tyrosine phosphatases have important roles as specific and active regulators of tyrosine phosphorylation in cells and of physiological processes. Consequently, the protein tyrosine phosphatases are receiving arising interest as novel drug targets. The aim of this work was to elucidate the negative regulation of receptor tyrosine kinases by one non-receptor protein tyrosine phosphatase, T-cell protein tyrosine phosphatase TCPTP. The results show that TCPTP activated by cell adhesion receptor integrin α1 functions as a negative regulator of the epidermal growth factor receptor. It was also found that TCPTP affects vascular endothelial growth factor receptor 2 signalling and angiogenesis. Lastly, a High-throughput screen with 64,280 compounds was performed to identify novel TCPTP activators, resulting in identification of one small molecule compound capable of exerting similar effects on TCPTP signalling as integrin α1. This compound is shown to downregulate signalling of epidermal growth factor receptor and platelet-derived growth factor receptor β, as well as to inhibit cell proliferation and angiogenesis. Our results suggest that a suitable small-molecule TCPTP activator could be utilized in the development of novel anti-cancer drugs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In our previous studies we have described that ST3Gal III transfected pancreatic adenocarcinoma Capan-1 and MDAPanc-28 cells show increased membrane expression levels of sialyl-Lewis x (SLex) along with a concomitant decrease in α2,6-sialic acid compared to control cells. Here we have addressed the role of this glycosylation pattern in the functional properties of two glycoproteins involved in the processes of cancer cell invasion and migration, α2β1 integrin, the main receptor for type 1 collagen, and E-cadherin, responsible for cell-cell contacts and whose deregulation determines cell invasive capabilities. Our results demonstrate that ST3Gal III transfectants showed reduced cell-cell aggregation and increased invasive capacities. ST3Gal III transfected Capan-1 cells exhibited higher SLex and lower α2,6-sialic acid content on the glycans of their α2β1 integrin molecules. As a consequence, higher phosphorylation of focal adhesion kinase tyrosine 397, which is recognized as one of the first steps of integrin-derived signaling pathways, was observed in these cells upon adhesion to type 1 collagen. This molecular mechanism underlies the increased migration through collagen of these cells. In addition, the pancreatic adenocarcinoma cell lines as well as human pancreatic tumor tissues showed colocalization of SLex and E-cadherin, which was higher in the ST3Gal III transfectants. In conclusion, changes in the sialylation pattern of α2β1 integrin and E-cadherin appear to influence the functional role of these two glycoproteins supporting the role of these glycans as an underlying mechanism regulating pancreatic cancer cell adhesion and invasion

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cell migration and adhesion to the extracellular matrix (ECM) are crucial in many biological and pathological processes such as morphogenesis, tissue repair, inflammatory responses, survival, and cancer. Cell-matrix adhesion is mediated by the integrin family of transmembrane receptors, which not only anchor cells to their surroundings, but also transmit bidirectional signalling at the cell surface and couple the ECM to the cytoskeleton. Another group of adhesion receptors are the syndecan proteoglycans, which engage the ECM and possess signalling activity in response to a variety of ligands. Cell migration is a complex process that requires spatial and temporal coordination of adhesion, cell contractility, intracellular traffic of integrins, and matrix turnover by matrix metalloproteinases (MMPs). Thus, integrins and syndecans, as well as MMPs, play essential roles in cancer cell migration and invasion. The understanding of the cooperation of syndecans and integrins was broadened in this thesis study. The results reveal that syndecan-1 functions in concert with 21 integrin in cell adhesion to collagen, whereas syndecan-4 is essential in 21 integrin-mediated matrix contraction. Finally, oncogenic K-Ras was shown to regulate 21 integrin, membrane-type 1 MMP, and syndecan-1 and -4 expression and their cooperation in cell invasion. Epithelial-mesenchymal transition (EMT) is fundamental during embryogenesis and organ development. Activation of EMT processes, including the upregulation of mesenchymal intermediate filament protein vimentin, has also been implicated in the acquisition of a malignant phenotype by epithelial cancer cells. Members of the protein kinase C (PKC) superfamily are involved in cell migration and various integrindependent cellular functions. One aim of this work was to shed light on the role of vimentin in the regulation of integrin traffic and cell motility. In addition, the mechanism by which vimentin participates in EMT was investigated. The results show that integrin recycling and motility are dependent on the PKC–mediated phosphorylation of vimentin. In addition, vimentin was found to be a positive regulator of EMT and regulate the expression of several migratory genes. Specifically, vimentin governs the expression of receptor tyrosine kinase Axl, which is implicated in tumour growth and metastasis. Taken together, the findings described in this thesis reveal novel aspects of the complex interplay between distinct cellular components: integrins, syndecans, and the vimentin cytoskeleton, which all contribute to the regulation of human cancer cell adhesion, migration, and invasion.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The golden standard in nuclear medicine imaging of inflammation is the use of radiolabeled leukocytes. Although their diagnostic accuracy is good, the preparation of the leukocytes is both laborious and potentially hazardous for laboratory personnel. Molecules involved in leukocyte migration could serve as targets for the development of inflammation imaging agents. An excellent target would be a molecule that is absent or expressed at low level in normal tissues, but is induced or up-regulated at the site of inflammation. Vascular adhesion protein-1 (VAP-1) is a very promising target for in vivo imaging, since it is translocated to the endothelial cell surface when inflammation occurs. VAP-1 functions as an endothelial adhesion molecule that participates in leukocyte recruitment to inflamed tissues. Besides being an adhesion molecule, VAP-1 also has enzymatic activity. In this thesis, the targeting of VAP-1 was studied by using Gallium-68 (68Ga) labeled peptides and an Iodine-124 (124I) labeled antibody. The peptides were designed based on molecular modelling and phage display library searches. The new imaging agents were preclinically tested in vitro, as well as in vivo in animal models. The most promising imaging agent appeared to be a peptide belonging to the VAP-1 leukocyte ligand, Siglec-9 peptide. The 68Ga-labeled Siglec-9 peptide was able to detect VAP-1 positive vasculature in rodent models of sterile skin inflammation and melanoma by positron emission tomography. In addition to peptides, the 124I-labeled antibody showed VAP-1 specific binding both in vitro and in vivo. However, the estimated human radiation dose was rather high, and thus further preclinical studies in disease models are needed to clarify the value of this imaging agent. Detection of VAP-1 on endothelium was demonstrated in these studies and this imaging approach could be used in the diagnosis of inflammatory conditions as well as melanoma. These studies provide a proof-of-concept for PET imaging of VAP-1 and further studies are warranted.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Streptococcus suis is an important pig pathogen but it is also zoonotic, i.e. capable of causing diseases in humans. Human S. suis infections are quite uncommon but potentially life-threatening and the pathogen is an emerging public health concern. This Gram-positive bacterium possesses a galabiose-specific (Galalpha1−4Gal) adhesion activity, which has been studied for over 20 years. P-fimbriated Escherichia coli−bacteria also possess a similar adhesin activity targeting the same disaccharide. The galabiose-specific adhesin of S. suis was identified by an affinity proteomics method. No function of the protein identified was formerly known and it was designated streptococcal adhesin P (SadP). The peptide sequence of SadP contains an LPXTG-motif and the protein was proven to be cell wall−anchored. SadP may be multimeric since in SDS-PAGE gel it formed a protein ladder starting from about 200 kDa. The identification was confirmed by producing knockout strains lacking functional adhesin, which had lost their ability to bind to galabiose. The adhesin gene was cloned in a bacterial expression host and properties of the recombinant adhesin were studied. The galabiose-binding properties of the recombinant protein were found to be consistent with previous results obtained studying whole bacterial cells. A live-bacteria application of surface plasmon resonance was set up, and various carbohydrate inhibitors of the galabiose-specific adhesins were studied with this assay. The potencies of the inhibitors were highly dependent on multivalency. Compared with P-fimbriated E. coli, lower concentrations of galabiose derivatives were needed to inhibit the adhesion of S. suis. Multivalent inhibitors of S. suis adhesion were found to be effective at low nanomolar concentrations. To specifically detect galabiose adhesin−expressing S. suis bacteria, a technique utilising magnetic glycoparticles and an ATP bioluminescence bacterial detection system was also developed. The identification and characterisation of the SadP adhesin give valuable information on the adhesion mechanisms of S. suis, and the results of this study may be helpful for the development of novel inhibitors and specific detection methods of this pathogen.