941 resultados para Platelet activation factor
Resumo:
Background: Though 293T cells are widely used for expression of proteins from transfected plasmid vectors, the molecular basis for the high-level expression is yet to be understood. We recently identified the prostate carcinoma cell line PC3 to be as efficient as 293T in protein expression. This study was undertaken to decipher the molecular basis of high-level expression in these two cell lines. Methodology/Principal Findings: In a survey of different cell lines for efficient expression of platelet-derived growth factor-B (PDGF-B), beta-galactosidase (beta-gal) and green fluorescent protein (GFP) from plasmid vectors, PC3 was found to express at 5-50-fold higher levels compared to the bone metastatic prostate carcinoma cell line PC3BM and many other cell lines. Further, the efficiency of transfection and level of expression of the reporters in PC3 were comparable to that in 293T. Comparative analyses revealed that the high level expression of the reporters in the two cell lines was due to increased translational efficiency. While phosphatidic acid (PA)-mediated activation of mTOR, as revealed by drastic reduction in reporter expression by n-butanol, primarily contributed to the high level expression in PC3, multiple pathways involving PA, PI3K/Akt and ERK1/2 appear to contribute to the abundant reporter expression in 293T. Thus the extent of translational upregulation attained through the concerted activation of mTOR by multiple pathways in 293T could be achieved through its activation primarily by the PA pathway in PC3. Conclusions/Significance: Our studies reveal that the high-level expression of proteins from plasmid vectors is effected by translational up-regulation through mTOR activation via different signaling pathways in the two cell lines and that PC3 is as efficient as 293T for recombinant protein expression. Further, PC3 offers an advantage in that the level of expression of the protein can be regulated by simple addition of n-butanol to the culture medium.
Resumo:
Plant organs are initiated as primordial outgrowths, and require controlled cell division and differentiation to achieve their final size and shape. Superimposed on this is another developmental program that orchestrates the switch from vegetative to reproductive to senescence stages in the life cycle. These require sequential function of heterochronic regulators. Little is known regarding the coordination between organ and organismal growth in plants. The TCP gene family encodes transcription factors that control diverse developmental traits, and a subgroup of class II TCP genes regulate leaf morphogenesis. Absence of these genes results in large, crinkly leaves due to excess division, mainly at margins. It has been suggested that these class II TCPs modulate the spatio-temporal control of differentiation in a growing leaf, rather than regulating cell proliferation per se. However, the link between class II TCP action and cell growth has not been established. As loss-of-function mutants of individual TCP genes in Arabidopsis are not very informative due to gene redundancy, we generated a transgenic line that expressed a hyper-activated form of TCP4 in its endogenous expression domain. This resulted in premature onset of maturation and decreased cell proliferation, leading to much smaller leaves, with cup-shaped lamina in extreme cases. Further, the transgenic line initiated leaves faster than wild-type and underwent precocious reproductive maturation due to a shortened adult vegetative phase. Early senescence and severe fertility defects were also observed. Thus, hyper-activation of TCP4 revealed its role in determining the timing of crucial developmental events, both at the organ and organism level.
Resumo:
The Notch signalling pathway is implicated in a wide variety of cellular processes throughout metazoan development. Although the downstream mechanism of Notch signalling has been extensively studied, the details of its ligand-mediated receptor activation are not clearly understood. Although the role of Notch ELRs EGF (epidermal growth factor)-like-repeats] 11-12 in ligand binding is known, recent studies have suggested interactions within different ELRs of the Notch receptor whose significance remains to be understood. Here, we report critical inter-domain interactions between human Notch1 ELRs 21-30 and the ELRs 11-15 that are modulated by calcium. Surface plasmon resonance analysis revealed that the interaction between ELRs 21-30 and ELRs 11-15 is similar to 10-fold stronger than that between ELRs 11-15 and the ligands. Although there was no interaction between Notch 1 ELRs 21-30 and the ligands in vitro, addition of pre-clustered Jagged1Fc resulted in the dissociation of the preformed complex between ELRs 21-30 and 11-15, suggesting that inter-domain interactions compete for ligand binding. Furthermore, the antibodies against ELRs 21-30 inhibited ligand binding to the full-length Notch1 and subsequent receptor activation, with the antibodies against ELRs 25-26 being the most effective. These results suggest that the ELRs 25-26 represent a cryptic ligand-binding site which becomes exposed only upon the presence of the ligand. Thus, using specific antibodies against various domains of the Notch1 receptor, we demonstrate that, although ELRs 11-12 are the principal ligand-binding site, the ELRs 25-26 serve as a secondary binding site and play an important role in receptor activation.
Resumo:
The zinc finger transcription factors Mxr1p and Rop are key regulators of methanol metabolism in the methylotrophic yeast, Pichia pastoris, while Trm1p and Trm2p regulate methanol metabolism in Candida boidinii. Here, we demonstrate that Trm1p is essential for the expression of genes of methanol utilization (mut) pathway in P. pastoris as well. Expression of AOXI and other genes of mut pathway is severely compromised in P. pastoris Delta Trm1 strain resulting in impaired growth on media containing methanol as the sole source of carbon. Trm1p localizes to the nucleus of cells cultured on glucose or methanol. The zinc finger domain of Mxr1p but not Trm1p binds to AOXI promoter sequences in vitro, indicating that these two positive regulators act by different mechanisms. We conclude that both Trm1p and Mxr1p are essential for the expression of genes of mut pathway in P. pastoris and the mechanism of transcriptional regulation of mut pathway may be similar in P. pastoris and C. boidinii. (C) 2014 Elsevier Inc. All rights reserved.
Resumo:
Actions of transforming growth factor-beta are largely context dependent. For instance, TGF-beta is growth inhibitory to epithelial cells and many tumor cell-lines while it stimulates the growth of mesenchymal cells. TGF-beta also activates fibroblast cells to a myofibroblastic phenotype. In order to understand how the responsiveness of fibroblasts to TGF-beta would change in the context of transformation, we have compared the differential gene regulation by TGF-beta in immortal fibroblasts (hFhTERT), transformed fibroblasts (hFhTERT-LTgRAS) and a human fibrosarcoma cell-line (HT1080). The analysis revealed regulation of 6735, 4163, and 3478 probe-sets by TGF-beta in hFhTERT, hFhTERT-LTgRAS and HT1080 cells respectively. Intriguingly, 5291 probe-sets were found to be either regulated in hFhTERT or hFhTERT-LTgRAS cells while 2274 probe-sets were regulated either in hFhTERT or HT1080 cells suggesting that the response of immortal hFhTERT cells to TGF-beta is vastly different compared to the response of both the transformed cells hFhTERT-LTgRAS and HT1080 to TGF-beta. Strikingly, WNT pathway showed enrichment in the hFhTERT cells in Gene Set Enrichment Analysis. Functional studies showed induction of WNT4 by TGF-beta in hFhTERT cells and TGF-beta conferred action of these cells was mediated by WNT4. While TGF-beta activated both canonical and non-canonical WNT pathways in hFhTERT cells, Erk1/2 and p38 Mitogen Activated Protein Kinase pathways were activated in hFhTERT-LTgRAS and HT1080 cells. This suggests that transformation of immortal hFhTERT cells by SV40 large T antigen and activated RAS caused a switch in their response to TGF-beta which matched with the response of HT1080 cells to TGF-beta. These data suggest context dependent activation of non-canonical signaling by TGF-beta. (C) 2015 Published by Elsevier Inc.
Resumo:
In xenotransplantation, donor endothelium is the first target of immunological attack. Activation of the endothelial cell by preformed natural antibodies leads to platelet binding via the interaction of the glycoprotein (GP) Ib and von Willebrand factor (vWF). TMVA is a novel GPIb-binding protein purified from the venom of Trimeresurus mucrosquamatus. In this study, the inhibitory effect of TMVA on platelet aggregation in rats and the effect on discordant guinea pig-to-rat cardiac xenograft survival were investigated. Three doses (8, 20 or 40 mug/kg) of TMVA were infused intravenously to 30 rats respectively. Platelet aggregation rate was assayed 0.5, 12, and 24 h after TMVA administration. Wister rats underwent guinea pig cardiac cervical heterotopic transplantation using single dosing of TMVA (20 mug/kg, i.v., 0.5 h before reperfusion). Additionally, levels of TXB2 and 6-keto-PGF(1alpha) within rejected graft tissues were determined by radioimmunoassay. Treatment with TMVA at a dose of 20 or 40 mug/kg resulted in complete inhibition of platelet aggregation 0.5 h after TMVA administration. Rats receiving guinea pig cardiac xenografts after TMVA therapy had significantly prolonged xenograft survival. Histologic and immunopathologic analysis of cardiac xenografts in TMVA treatment group showed no intragraft platelet microthrombi formation and fibrin deposition. Additionally, the ratio of 6-keto-PGF(1alpha) to TXB2 in TMVA treatment group was significantly higher than those in control group. We conclude that the use of this novel GPIb-binding protein was very effective in preventing platelet microthrombi formation and fibrin deposition in a guinea pig-to-rat model and resulted in prolongation of xenograft survival. The increased ratio of PGI(2)/TXA(2) in TMVA treatment group may protect xenografts from the endothelial cell activation and contribute to the prolongation of xenograft survival.
Resumo:
We have isolated and sequenced a cDNA encoding the human beta 2-adrenergic receptor. The deduced amino acid sequence (413 residues) is that of a protein containing seven clusters of hydrophobic amino acids suggestive of membrane-spanning domains. While the protein is 87% identical overall with the previously cloned hamster beta 2-adrenergic receptor, the most highly conserved regions are the putative transmembrane helices (95% identical) and cytoplasmic loops (93% identical), suggesting that these regions of the molecule harbor important functional domains. Several of the transmembrane helices also share lesser degrees of identity with comparable regions of select members of the opsin family of visual pigments. We have localized the gene for the beta 2-adrenergic receptor to q31-q32 on chromosome 5. This is the same position recently determined for the gene encoding the receptor for platelet-derived growth factor and is adjacent to that for the FMS protooncogene, which encodes the receptor for the macrophage colony-stimulating factor.
Resumo:
Suppressors of cytokine signalling (SOCS, also known as CIS and SSI) are encoded by immediate early genes that act in a feedback loop to inhibit cytokine responses and activation of 'signal transducer and activator of transcription' (STAT). Here we show that SOCS-3 is strongly tyrosine-phosphorylated in response to many growth factors, including interleukin-2 (IL-2), erythropoietin (EPO), epidermal growth factor (EGF) and platelet-derived growth factor (PDGF). The principal phosphorylation sites on SOCS-3 are residues 204 and 221 at the carboxy terminus, and upon phosphorylation tyrosine 221 interacts with the Ras inhibitor p120 RasGAP. After IL-2 stimulation, phosphorylated SOCS-3 strongly inhibits STAT5 activation but, by binding to RasGAP, maintains activation of extracellular-signal-regulated kinase (ERK). A tyrosine mutant of SOCS-3 still blocks STAT phosphorylation, but also strongly inhibits IL-2-dependent activation of ERK and cell proliferation. Moreover, it also inhibits EPO- and PDGF-induced proliferation and ERK activation. Therefore, although SOCS proteins inhibit growth-factor responses, tyrosine phosphorylation of SOCS-3 can ensure cell survival and proliferation through the Ras pathway.
Resumo:
The aim of this study was to investigate the effects of elevated D-glucose concentrations on vascular smooth muscle cell (VSMC) expression of the platelet-derived growth factor (PDGF) beta receptor and VSMC migratory behavior. Immunoprecipitation, immunofluorescent staining, and RT-PCR of human VSMCs showed that elevated D-glucose induced an increase in the PDGF beta receptor that was inhibited by phosphatidylinositol 3-kinase (PI3K) and mitogen-activated protein kinase (MAPK) pathway inhibitors. Exposure to 25 mmol/l D-glucose (HG) induced increased phosphorylation of protein kinase B (PKB) and extracellular-regulated kinase (ERK). All HG chemotaxis assays (with either 10 days' preincubation in HG or no preincubation) in a FCS or PDGF-BB gradient showed positive chemotaxis, whereas those in 5 mmol/l D-glucose did not. Assays were also run with concentrations ranging from 5 to 25 mmol/l D-glucose. Chemotaxis was induced at concentrations >9 mmol/l D-glucose. An anti-PDGF beta receptor antibody inhibited glucose-potentiated VSMC chemotaxis, as did the inhibitors for the PI3K and MAPK pathways. This study has shown that small increases in D-glucose concentration, for a short period, increase VSMC expression of the PDGF beta receptor and VSMC sensitivity to chemotactic factors in serum, leading to altered migratory behavior in vitro. It is probable that similar processes occur in vivo with glucose-enhanced chemotaxis of VSMCs, operating through PDGF beta receptor-operated pathways, contributing to the accelerated formation of atheroma in diabetes.