969 resultados para Plasma properties
Resumo:
Hall-effect thrusters (HETs) are compact electric propulsion devices with high specific impulse used for a variety of space propulsion applications. HET technology is well developed but the electron properties in the discharge are not completely understood, mainly due to the difficulty involved in performing accurate measurements in the discharge. Measurements of electron temperature and density have been performed using electrostatic probes, but presence of the probes can significantly disrupt thruster operation, and thus alter the electron temperature and density. While fast-probe studies have expanded understanding of HET discharges, a non-invasive method of measuring the electron temperature and density in the plasma is highly desirable. An alternative to electrostatic probes is a non-perturbing laser diagnostic technique that measures Thomson scattering from the plasma. Thomson scattering is the process by which photons are elastically scattered from the free electrons in a plasma. Since the electrons have thermal energy their motion causes a Doppler shift in the scattered photons that is proportional to their velocity. Like electrostatic probes, laser Thomson scattering (LTS) can be used to determine the temperature and density of free electrons in the plasma. Since Thomson scattering measures the electron velocity distribution function directly no assumptions of the plasma conditions are required, allowing accurate measurements in anisotropic and non-Maxwellian plasmas. LTS requires a complicated measurement apparatus, but has the potential to provide accurate, non-perturbing measurements of electron temperature and density in HET discharges. In order to assess the feasibility of LTS diagnostics on HETs non-invasive measurements of electron temperature and density in the near-field plume of a Hall thruster were performed using a custom built laser Thomson scattering diagnostic. Laser measurements were processed using a maximum likelihood estimation method and results were compared to conventional electrostatic double probe measurements performed at the same thruster conditions. Electron temperature was found to range from approximately 1 – 40 eV and density ranged from approximately 1.0 x 1017 m-3 to 1.3 x 1018 m-3 over discharge voltages from 250 to 450 V and mass flow rates of 40 to 80 SCCM using xenon propellant.
Probing the mechanical properties of TNF-α stimulated endothelial cell with atomic force microscopy.
Resumo:
TNF-α (tumor necrosis factor-α) is a potent pro-inflammatory cytokine that regulates the permeability of blood and lymphatic vessels. The plasma concentration of TNF-α is elevated (> 1 pg/mL) in several pathologies, including rheumatoid arthritis, atherosclerosis, cancer, pre-eclampsia; in obese individuals; and in trauma patients. To test whether circulating TNF-α could induce similar alterations in different districts along the vascular system, three endothelial cell lines, namely HUVEC, HPMEC, and HCAEC, were characterized in terms of 1) mechanical properties, employing atomic force microscopy; 2) cytoskeletal organization, through fluorescence microscopy; and 3) membrane overexpression of adhesion molecules, employing ELISA and immunostaining. Upon stimulation with TNF-α (10 ng/mL for 20 h), for all three endothelial cells, the mechanical stiffness increased by about 50% with a mean apparent elastic modulus of E ~5 ± 0.5 kPa (~3.3 ± 0.35 kPa for the control cells); the density of F-actin filaments increased in the apical and median planes; and the ICAM-1 receptors were overexpressed compared with controls. Collectively, these results demonstrate that sufficiently high levels of circulating TNF-α have similar effects on different endothelial districts, and provide additional information for unraveling the possible correlations between circulating pro-inflammatory cytokines and systemic vascular dysfunction.
Resumo:
Previous investigations have demonstrated qualitative differences in the plasma membrane glycoproteins of normal and malignant rat liver cells. The present investigations were designed to identify and characterize the spectrum of glycoproteins present on the surface of Novikoff and AS-30D hepatocellular carcinoma cells. Three cell-surface radiolabeling techniques were employed to tag specifically the plasma membrane glycoproteins: lactoperoxidase catalyzed iodination, specific for tyrosine residues; galactose oxidase/NaB{('3)H}(,4), specific for galactosyl residues; and NaIO(,4)/NaB{('3)H}(,4), specific for sialic acids. The glycoproteins were resolved by one- and two-dimensional gel electrophoresis and visualized by fluorography or autoradiography. It was found that these glycoproteins are a complex population of molecules. The complexity of this system is reflected not only in the number of individual components that can be detected (> 25), but in the charge heterogeneity of individual glycoproteins due to variable sialic acid content. Certain glycoproteins behaved anamolously on SDS-polyacrylamide gel electrophoresis; the apparent molecular weight decreasing with increasing acrylamide concentrations suggesting a high % carbohydrate. Cell-surface radiolabeling techniques were employed in combination with lectin affinity chromatography, using lectins of different saccharide specificity, to analyze the saccharide determinants present on the spectrum of cell-surface molecules. It was also found that particular glycoproteins differed in their lability to protease or neuraminidase digestion and in their extractability by non-ionic detergents. From these studies, detailed models of the plasma membrane of Novikoff and AS-30D cells were constructed which incorporates information concerning the structure and accessibility of heterosaccharide and peptide moieties, the relationship of the glycolipids, and the interaction of particular glycoproteins with the lipid bilayer. These investigations provide basic information concerning the molecular composition and properties of the plasma membrane of glycoproteins of malignant rat liver cells and lay the groundwork for future comparison to normal hepatocytes. ^
Resumo:
Recent findings in the field of biomaterials and tissue engineering provide evidence that surface immobilised growth factors display enhanced stability and induce prolonged function. Cell response can be regulated by material properties and at the site of interest. To this end, we developed scaffolds with covalently bound vascular endothelial growth factor (VEGF) and evaluated their mitogenic effect on endothelial cells in vitro. Nano- (254±133 nm) or micro-fibrous (4.0±0.4 μm) poly(ɛ-caprolactone) (PCL) non-wovens were produced by electrospinning and coated in a radio frequency (RF) plasma process to induce an oxygen functional hydrocarbon layer. Implemented carboxylic acid groups were converted into amine-reactive esters and covalently coupled to VEGF by forming stable amide bonds (standard EDC/NHS chemistry). Substrates were analysed by X-ray photoelectron spectroscopy (XPS), enzyme-linked immuno-assays (ELISA) and immunohistochemistry (anti-VEGF antibody and VEGF-R2 binding). Depending on the reaction conditions, immobilised VEGF was present at 127±47 ng to 941±199 ng per substrate (6mm diameter; concentrations of 4.5 ng mm(-2) or 33.3 ng mm(-2), respectively). Immunohistochemistry provided evidence for biological integrity of immobilised VEGF. Endothelial cell number of primary endothelial cells or immortalised endothelial cells were significantly enhanced on VEGF-functionalised scaffolds compared to native PCL scaffolds. This indicates a sustained activity of immobilised VEGF over a culture period of nine days. We present a versatile method for the fabrication of growth factor-loaded scaffolds at specific concentrations.
Resumo:
Cardiac tissue engineering approaches can deliver large numbers of cells to the damaged myocardium and have thus increasingly been considered as a possible curative treatment to counteract the high prevalence of progressive heart failure after myocardial infarction (MI). Optimal scaffold architecture and mechanical and chemical properties, as well as immune- and bio-compatibility, need to be addressed. We demonstrated that radio-frequency plasma surface functionalized electrospun poly(ɛ-caprolactone) (PCL) fibres provide a suitable matrix for bone-marrow-derived mesenchymal stem cell (MSC) cardiac implantation. Using a rat model of chronic MI, we showed that MSC-seeded plasma-coated PCL grafts stabilized cardiac function and attenuated dilatation. Significant relative decreases of 13% of the ejection fraction (EF) and 15% of the fractional shortening (FS) were observed in sham treated animals; respective decreases of 20% and 25% were measured 4 weeks after acellular patch implantation, whereas a steadied function was observed 4 weeks after MSC-patch implantation (relative decreases of 6% for both EF and FS).
New fully kinetic model for the study of electric potential, plasma, and dust above lunar landscapes
Resumo:
We have developed a new fully kinetic electrostatic simulation, HYBes, to study how the lunar landscape affects the electric potential and plasma distributions near the surface and the properties of lifted dust. The model embodies new techniques that can be used in various types of physical environments and situations. We demonstrate the applicability of the new model in a situation involving three charged particle species, which are solar wind electrons and protons, and lunar photoelectrons. Properties of dust are studied with test particle simulations by using the electric fields derived from the HYBes model. Simulations show the high importance of the plasma and the electric potential near the surface. For comparison, the electric potential gradients near the landscapes with feature sizes of the order of the Debye length are much larger than those near a flat surface at different solar zenith angles. Furthermore, dust test particle simulations indicate that the landscape relief influences the dust location over the surface. The study suggests that the local landscape has to be taken into account when the distributions of plasma and dust above lunar surface are studied. The HYBes model can be applied not only at the Moon but also on a wide range of airless planetary objects such as Mercury, other planetary moons, asteroids, and nonactive comets.
Resumo:
Analysis of pelagic clay samples from Sites 576, 578, and 581 shows that physical, acoustic, and electrical trends with increasing burial depth are related to mineralogical and diagenetic changes. The properties of interest are bulk density (roo), porosity (phi), compressional-wave velocity (Vp) and velocity anisotropy (Ap), and electrical resistivity (Ro) and resistivity anisotropy (Ar). In general, as demonstrated in particular for the brown pelagic clay, the increase in roo, Vp, Ro, and to a lesser extent Ap and Ar with increasing depth is primarily caused by decreasing phi (and water content) as a result of compaction. The mineralogy and chemistry of the pelagic clays vary as a function of burial depth at all three sites. These variations are interpreted to reflect changes in the relative importance of detrital and diagenetic components. Mineralogical and chemical variations, however, play minor roles in determining variations in acoustic and electrical properties of the clays with increasing burial depth.
Resumo:
We report measurements of magnetic intensity, inclination, initial susceptibility, Koenigsberger's ratio, saturation magnetization, and Curie temperatures of 68 basalt samples from the Leg 83 section of Hole 504B. As in the upper part of the hole, reversely magnetized units predominate. Intensities of natural remanent magnetization vary widely, but the range of variation is an order of magnitude less than in the upper part of the hole. This and the other properties measured indicate that the magnetic characteristics of basalts from Hole 504B have been strongly affected by hydrothermal alteration, particularly in the deeper, Leg 83 section. The alteration states of the magnetic samples were studies using Xray diffraction, electron microprobe, X-ray fluorescence, and ion coupled plasma. Our results suggest three alteration zones in Hole 504B: a low-temperature zone (274.5-890 m) and two high-temperature zones (890-1050 m and 1050- 1350 m), differing in the number of veins observed in the samples and presumably differing in the volumes of hydrothermal fluids which reacted with the basalts.
Resumo:
Soil fauna in the extreme conditions of Antarctica consists of a few microinvertebrate species patchily distributed at different spatial scales. Populations of the prostigmatic mite Stereotydeus belli and the collembolan Gressittacantha terranova from northern Victoria Land (Antarctica) were used as models to study the effect of soil properties on microarthropod distributions. In agreement with the general assumption that the development and distribution of life in these ecosystems is mainly controlled by abiotic factors, we found that the probability of occurrence of S. belli depends on soil moisture and texture and on the sampling period (which affects the general availability of water); surprisingly, none of the analysed variables were significantly related to the G. terranova distribution. Based on our results and literature data, we propose a theoretical model that introduces biotic interactions among the major factors driving the local distribution of collembolans in Antarctic terrestrial ecosystems.
Resumo:
The increase in atmospheric CO2 due to anthropogenic activity results in an acidification of the surface waters of the oceans. Its impact will depend on the considered organisms and ecosystems. The intertidal may harbor organisms pre-adapted to the upcoming changes as they face tidal pH and temperature fluctuations. However, these environments will be more affected as shallow waters will face the highest decrease in seawater pH. In this context, the effects of reduced environmental pH on the physiology and tube feet mechanical properties of the intertidal starfish Asterias rubens, a top predator, were investigated during 15 and 27 days. A. rubens showed a respiratory acidosis with its coelomic fluid pH always lower than that of seawater. This acidosis was most pronounced at pH 7.4. Notwithstanding, the starfish showed no significant variations in RNA/DNA ratio of different tissues and in tube feet strength. However, respiration rates were significantly lower for individuals maintained at reduced seawater pH. Within the ocean acidification context, the present results suggest that A. rubens withstands the effects of reduced seawater pH, at least for medium term exposures.
Resumo:
Persistent chemicals accumulate in the arctic environment due to their chemical reactivity and physicochemical properties and polychlorinated biphenyls (PCBs) are the most concentrated pollutant class in polar bears (Ursus maritimus). Metabolism of PCB and polybrominated biphenyl ether (PBDE) flame-retardants alter their toxicological properties and these metabolites are known to interfere with the binding of thyroid hormone (TH) to transthyretin (TTR) in rodents and humans. In polar bear plasma samples no binding of [125I]-T4 to TTR was observed after incubation and PAGE separation. Incubation of the plasma samples with [14C]-4-OH-CB107, a compound with a higher binding affinity to TTR than the endogenous ligand T4 resulted in competitive binding as proven by the appearance of a radio labeled TTR peak in the gel. Plasma incubation with T4 up to 1 mM, a concentration that is not physiologically relevant anymore did not result in any visible competition. These results give evidence that the binding sites on TTR for T4 in wild living polar bears are completely saturated. Such saturation of binding sites can explain observed lowered levels of THs and could lead to contaminant transport into the developing fetus.
Resumo:
We will present calculations of opacities for matter under LTE conditions. Opacities are needed in radiation transport codes to study processes like Inertial Confinement Fusion and plasma amplifiers in X-ray secondary sources. For the calculations we use the code BiGBART, with either a hydrogenic approximation with j-splitting or self-consistent data generated with the atomic physics code FAC. We calculate the atomic structure, oscillator strengths, radiative transition energies, including UTA computations, and photoionization cross-sections. A DCA model determines the configurations considered in the computation of the opacities. The opacities obtained with these two models are compared with experimental measurements.
Resumo:
We present a study of the optical properties of GaN/AlN and InGaN/GaN quantum dot (QD) superlattices grown via plasma-assisted molecular-beam epitaxy, as compared to their quantum well (QW) counterparts. The three-dimensional/two-dimensional nature of the structures has been verified using atomic force microscopy and transmission electron microscopy. The QD superlattices present higher internal quantum efficiency as compared to the respective QWs as a result of the three-dimensional carrier localization in the islands. In the QW samples, photoluminescence (PL) measurements point out a certain degree of carrier localization due to structural defects or thickness fluctuations, which is more pronounced in InGaN/GaN QWs due to alloy inhomogeneity. In the case of the QD stacks, carrier localization on potential fluctuations with a spatial extension smaller than the QD size is observed only for the InGaN QD-sample with the highest In content (peak emission around 2.76 eV). These results confirm the efficiency of the QD three-dimensional confinement in circumventing the potential fluctuations related to structural defects or alloy inhomogeneity. PL excitation measurements demonstrate efficient carrier transfer from the wetting layer to the QDs in the GaN/AlN system, even for low QD densities (~1010 cm-3). In the case of InGaN/GaN QDs, transport losses in the GaN barriers cannot be discarded, but an upper limit to these losses of 15% is deduced from PL measurements as a function of the excitation wavelength.
Resumo:
urface treatments have been recently shown to play an active role in electrical characteristics in AlGaN/GaN HEMTs, in particular during the passivation processing [1-4]. However, the responsible mechanisms are partially unknown and further studies are demanding. The effects of power and time N2 plasma pre-treatment prior to SiN deposition using PE-CVD (plasma enhanced chemical vapour deposition) on GaN and AlGaN/GaN HEMT have been investigated. The low power (60 W) plasma pre-treatment was found to improve the electronic characteristics in GaN based HEMT devices, independently of the time duration up to 20 min. In contrast, high power (150 and 210 W) plasma pretreatment showed detrimental effects in the electronic properties (Fig. 1), increasing the sheet resistance of the 2DEG, decreasing the 2DEG charge density in AlGaN/GaN HEMTs, transconductance reduction and decreasing the fT and fmax values up to 40% respect to the case using 60 W N2 plasma power. Although AFM (atomic force microscopy) results showed AlGaN and GaN surface roughness is not strongly affected by the N2-plasma, KFM (Kelvin force microscopy) surface analysis shows significant changes in the surface potential, trending to increase its values as the plasma power is higher. The whole results point at energetic ions inducing polarization-charge changes that affect dramatically to the 2-DEG charge density and the final characteristics of the HEMT devices. Therefore, we conclude that AlGaN surface is strongly sensitive to N2 plasma power conditions, which turn to be a key factor to achieve a good surface preparation prior to SiN passivation.