971 resultados para Plant production


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Aniba canelilla (H.B.K.) Mez. is a tree species from Amazon that produces essential oil. The oil extraction from its leaves and stems can be an alternative way to avoid the tree cutting for production of essential oil. The aim of this study was to analyse factors that may influence the essential oil production and the biomass of resprouts after pruning the leaves and stems of A. canelilla trees. The tree crowns were pruned in the wet season and after nine months the leaves and stems of the remaining crown and the resprouts were collected, in the dry season. The results showed that the essential oil yield and chemical composition differed among the stems, leaves and resprouts. The stems' essential oil production differed between the seasons and had a higher production in the resprouting stems than the old stems of the remaining crown. The production of essential oil and leaf biomass of resprouts were differently related to the canopy openness, indicating that light increases the production of the essential oil and decreases the biomass of resprouting leaves. This study revealed that plant organs differ in their essential oil production and that the canopy openness must be taken into account when pruning the A. canelilla tree crown in order to achieve higher oil productivity.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Dissertação de mestrado em Plant Molecular Biology, Biotechnology and Bioentrepreneurship

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The agroindustrial residues including plant tissues rich in polyphenols were explored for microbial production of potent phenolics under solid state fermentation processes. The fungal strains capable of hydrolyzing tannin-rich materials were isolated from Mexican semidesert zones. These microorganisms have been employed to release potent phenolic antioxidants during the solid state fermentation of different materials (pomegranate peels, pecan nut shells, creosote bush and tar bush). This chapter includes the critical parameters for antioxidants production from selective microbes. Technical aspects of the microbial fermentation of antioxidants have also been discussed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Energy from waste (E/W) technologies in the form o f biogas plants, CHP plants and other municipal solid waste (MSW) conversion technologies, have been gaining steady ground in the provision o f energy throughout Europe and the UK. Urban Waste Water Treatment Plants (UWWTP) are utilising much o f the same biochemical processes common to these E/W plants. Previous studies on Centralised Anaerobic Digestion (CAD) within Ireland found that the legislative and economic conditions were not conducive to such an operation on the grounds o f low energy price for electric and heat energy, and due to the restrictive nature o f the allowable feedstocks. Recent changes to the Irish REFIT tariff on energy produced from Anaerobic digestion; alterations to the regulation o f the allowable use o f animal by products(ABP); the recent enactment o f the Renewable Energy D irective (09/28/EC) and a subsequent review o f the draft Biowaste Directive (2001) required that the issue o f decentralised energy production in Ireland be reassessed. In this instance the feasibility study is based on a extant rural community, centred around the village o f Woodford Co Galway. The review found that the prevailing conditions were now such that it was technically and economically feasible for this biochemical process to provide energy and waste treatment facilities at the above location. The review also outlines the last item which is preventing this process from becoming achievable, specifically the lack o f a digestate regulation on land spreading which deals specifically with biowaste. The study finds that the implementation o f the draft EU biowaste regulations, with amendments for Cr and Hg levels to match the proposed Irish regulation for compost, would ensure that Ireland has some o f the most restrictive regulations in Europe for this application. The delay in completing this piece o f legislation is preventing national energy and waste issues from being resolved in a planned and stepwise fashion. A proposed lay out for the new Integrated Waste from Energy Plant (IW/EP) is presented. Budget economic projections and alternative revenue streams are outlined. Finally a review o f the national policies regarding the Rural Development Plan (RDP), the Rural Planning Guidelines (RPG) and the National Renewable Energy Action Plan (NREAP) are examined against the relevant EU directives.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This research deals with the effects of growth regulators on flowering and pod formation in soybean plant (Glycine max cv. Davis). Under greenhouse conditions, soybean plants were sprayed with 2,3,5-triiodobenzoic acid (TIBA) 20 ppm, Agrostemmin (1g/10 ml/3 l) gibberellic acid (GA) 100 ppm, and (2-chloroethyl) trimethylammonium chloride (CCC) 2,000 ppm. Application of TIBA increased number of flowers. 'Davis' soybean treated with CCC and TIBA presented a tendency to produce a lower number of pods.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This research deals with the effects of exogenous growth regulators on production of soybean plant (Glycine max cv.. Davis) under greenhouse conditions, At the flower anthesis, 2,3,5-triiodobenzoic acid (TIBA) 20 ppm was applied. Other two applications with TiBA, with intervals of four days, were realized. Before flowering, Agrostemin (1 g/10 ml/3 1), gibberellic acid (GA) 100 ppm, and (2-chloroethyl) trimethylammonium chloride (CCC) 2,000 ppm were applied. It was observed that CCC and TIBA reduced stem dry weight. Soybean plants treated with TIBA reduced weight of pods without seeds , seed number and seed weight.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The influence of density of planting on flower production of carnation plants grown in vinil houses, was studied. Planting densities of 233,333; 175,000 and 116,667 plants per hectare were obtained by using planting spacings of 0.20 m between rows and 0.15 m, 0,20 m and 0.30 m between plants. Data were taken on total number of flowers per plant and per hectare. As far as planting densities are concerned, there was an increase of total flower production per hectare and a decrease of slower production per plant.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

RESUMEN El aumento del CO2 atmosférico debido al cambio global y/o a las prácticas hortícolas promueve efectos directos sobre crecimiento vegetal y el desarrollo. Estas respuestas pueden ocurrir en ecosistemas naturales, pero también se pueden utilizar para aumentar la producción de algunas plantas y de algunos compuestos secundarios. El actual trabajo intenta estudiar los efectos del enriquecimiento atmosférico del CO2 bajo condiciones de invernadero en el crecimiento y la concentración y la composición de metabolitos secundarios de Taxus bacatta, Hypericum perforatum y Echinacea purpurea en condiciones ambientales mediterráneas. La fertilización del CO2 muestra perspectivas interesantes para la mejorara y aplicabilidad de técnicas hortícolas para aumentar productividad de plantas medicinales, a pesar de diferencias claras entre la especie. En general esta técnica promueve aumentos importantes y significativos en producción primaria y, en algunos casos, también en compuestos secundarios. Esto tiene una gran importancia hortícola porque la productividad a nivel de cosecha total aumenta, directamente porque se aumenta la concentración e indirectamente porque se aumenta la biomasa. SUMMARY The increase of atmospheric CO2 due to global change and/or horticultural practices promotes direct effects on plant growth and development. These responses may occur in natural ecosystems, but also can be used to increase the production of some plants and some secondary compounds. Present work tries to study the effects of atmospheric CO2 enrichment under greenhouse conditions on growth and in the concentration and composition of secondary metabolites of Taxus bacatta, Hypericum perforatum and Echinacea purpurea under Mediterranean environmental conditions. CO2 fertilization shows interesting perspectives to increase and improve horticultural techniques in order to increase plant medicinal productivity, in spite of clear differences among the species. In general this technique promotes important and significant increases in primary productivity and, in some cases, also in secondary compounds. This has a great horticultural relevance because the total productivity of this kind of products increase at crop level, directly because concentration is increased and /or indirectly because biomass is increased. RESUM L'augment del CO2 atmosfèric a causa del canvi global i/o a les pràctiques hortícoles promou efectes directes sobre creixement vegetal i el desenvolupament. Aquestes respostes poden ocórrer en ecosistemes naturals, però també es poden utilitzar per a augmentar la producció d'algunes plantes i d'alguns compostos secundaris. L'actual treball intenta estudiar els efectes de l'enriquiment atmosfèric del CO2 sota condicions d'hivernacle en el creixement i la concentració i la composició de metabòlits secundaris de Taxus bacatta, Hypericum perforatum i Echinacea purpurea en condicions ambientals mediterrànies. La fertilització del CO2 mostra perspectives interessants per a la millora i aplicabilitat de tècniques hortícoles per a augmentar productivitat de plantes medicinals, a pesar de diferències clares entre l'espècie. En general aquesta tècnica promou augments importants i significatius en producció primària i, en alguns casos, també en compostos secundaris. Això té una gran importància hortícola perquè la productivitat a nivell de collita total augmenta, directament perquè s'augmenta la concentració i indirectament perquè s'augmenta la biomassa.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Polyhydroxyalkanoates (PHAs) are bacterial carbon storage polymers with diverse plastic-like properties. PHA biosynthesis in transgenic plants is being developed as a way to reduce the cost and increase the sustainability of industrial PHA production. The homopolymer polyhydroxybutyrate (PHB) is the simplest form of these biodegradable polyesters. Plant peroxisomes contain the substrate molecules and necessary reducing power for PHB biosynthesis, but peroxisomal PHB production has not been explored in whole soil-grown transgenic plants to date. We generated transgenic sugarcane (Saccharum sp.) with the three-enzyme Ralstonia eutropha PHA biosynthetic pathway targeted to peroxisomes. We also introduced the pathway into Arabidopsis thaliana, as a model system for studying and manipulating peroxisomal PHB production. PHB, at levels up to 1.6%-1.8% dry weight, accumulated in sugarcane leaves and A. thaliana seedlings, respectively. In sugarcane, PHB accumulated throughout most leaf cell types in both peroxisomes and vacuoles. A small percentage of total polymer was also identified as the copolymer poly (3-hydroxybutyrate-co-3-hydroxyvalerate) in both plant species. No obvious deleterious effect was observed on plant growth because of peroxisomal PHA biosynthesis at these levels. This study highlights how using peroxisomal metabolism for PHA biosynthesis could significantly contribute to reaching commercial production levels of PHAs in crop plants.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Pseudomonas fluorescens CHA0 produces a variety of secondary metabolites, in particular the antibiotics pyoluteorin and 2,4-diacetylphloroglucinol, and protects various plants from diseases caused by soilborne pathogenic fungi. The rpoD gene encoding the housekeeping sigma factor sigma 70 of P. fluorescens was sequenced. The deduced RpoD protein showed 83% identity with RpoD of Pseudomonas aeruginosa and 67% identity with RpoD of Escherichia coli. Attempts to inactivate the single chromosomal rpoD gene of strain CHA0 were unsuccessful, indicating an essential role of this gene. When rpoD was carried by an IncP vector in strain CHA0, the production of both antibiotics was increased severalfold and, in parallel, protection of cucumber against disease caused by Pythium ultimum was improved, in comparison with strain CHA0.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Polyhydroxyalkanoates (PHAs) are bacterial carbon storage polymers used as renewable, biodegradable plastics. PHA production in plants may be a way to reduce industrial PHA production costs. We recently demonstrated a promising level of peroxisomal PHA production in the high biomass crop species sugarcane. However, further production strategies are needed to boost PHA accumulation closer to commercial targets. Through exogenous fatty acid feeding of Arabidopsis thaliana plants that contain peroxisome-targeted PhaA, PhaB and PhaC enzymes from Cupriavidus necator, we show here that the availability of substrates derived from the β-oxidation cycle limits peroxisomal polyhydroxybutyrate (PHB) biosynthesis. Knockdown of peroxisomal citrate synthase activity using artificial microRNA increased PHB production levels approximately threefold. This work demonstrates that reduction of peroxisomal citrate synthase activity may be a valid metabolic engineering strategy for increasing PHA production in other plant species.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Whiteflies and whitefly-transmitted viruses are some of the major constraints on European tomato production. The main objectives of this study were to: identify where and why whiteflies are a major limitation on tomato crops; collect information about whiteflies and associated viruses; determine the available management tools; and identify key knowledge gaps and research priorities. This study was conducted within the framework of ENDURE (European Network for Durable Exploitation of Crop Protection Strategies). Two whitefly species are the main pests of tomato in Europe: Bemisia tabaci and Trialeurodes vaporariorum. Trialeurodes vaporariorum is widespread to all areas where greenhouse industry is present, and B. tabaci has invaded, since the early 1990’s, all the subtropical and tropical areas. Biotypes B and Q of B. tabaci are widespread and especially problematic. Other key tomato pests are Aculops lycopersici, Helicoverpa armigera, Frankliniella occidentalis, and leaf miners. Tomato crops are particularly susceptible to viruses causingTomato yellow leaf curl disease (TYLCD). High incidences of this disease are associated to high pressure of its vector, B. tabaci. The ranked importance of B. tabaci established in this study correlates with the levels of insecticide use, showing B. tabaci as one of the principal drivers behind chemical control. Confirmed cases of resistance to almost all insecticides have been reported. Integrated Pest Management based on biological control (IPM-BC) is applied in all the surveyed regions and identified as the strategy using fewer insecticides. Other IPM components include greenhouse netting and TYLCD-tolerant tomato cultivars. Sampling techniques differ between regions, where decisions are generally based upon whitefly densities and do not relate to control strategies or growing cycles. For population monitoring and control, whitefly species are always identified. In Europe IPM-BC is the recommended strategy for a sustainable tomato production. The IPM-BC approach is mainly based on inoculative releases of the parasitoids Eretmocerus mundus and Encarsia formosa and/or the polyphagous predators Macrolophus caliginosus and Nesidiocoris tenuis. However, some limitations for a wider implementation have been identified: lack of biological solutions for some pests, costs of beneficials, low farmer confidence, costs of technical advice, and low pest injury thresholds. Research priorities to promote and improve IPM-BC are proposed on the following domains: (i) emergence and invasion of new whitefly-transmitted viruses; (ii) relevance of B. tabaci biotypes regarding insecticide resistance; (iii) biochemistry and genetics of plant resistance; (iv) economic thresholds and sampling techniques of whiteflies for decision making; and (v) conservation and management of native whitefly natural enemies and improvement of biological control of other tomato pests.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Plants are notoriously variable in gender, ranging in sex allocation from purely male through hermaphrodite to purely female. This variation can have both a genetic and an adaptive plastic component. In gynodioecious species, where females co-occur with hermaphrodites, hermaphrodites tend to shift their allocation towards greater maleness when growing under low-resource conditions, either as a result of hermaphrodites shifting away from an expensive female function, or because of enhanced siring advantages in the presence of females. Similarly, in the androdioecious plant Mercurialis annua, where hermaphrodites co-exist with males, hermaphrodites also tend to enhance their relative male allocation under low-resource conditions. Here, we ask whether this response differs between hermaphrodites that have been evolving in the presence of males, in a situation analogous to that supposed for gynodioecious populations, vs. those that have been evolving in their absence. We grew hermaphrodites of M. annua from populations in which males were either present or absent under different levels of nutrient availability and compared their reaction norms. We found that, overall, hermaphrodites from populations with males tended to be more female than those from populations lacking males. Importantly, hermaphrodites' investment in pollen and seed production was more plastic when they came from populations with males than without them, reducing their pollen production at low resource availability and increasing their seed production at high resource availability. These results are consistent with the hypothesis that plasticity in sex allocation is enhanced in hermaphrodites that have likely been exposed to variation in mating opportunities due to fluctuations in the frequency of co-occurring males.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

It is likely that during this century polymers based on renewable materials will gradually replace industrial polymers based on petrochemicals. This chapter gives an overview of the current status of research on plant biopolymers that are used as a material in non-food applications. We cover technical and scientific bottlenecks in the production of novel or improved materials, and the potential of using transgenic or alternative crops in overcoming these bottlenecks. Four classes of biopolymers will be discussed: starch, proteins, natural rubber, and poly-beta-hydroxyalkanoates. Renewable polymers produced by chemical polymerization of monomers derived from sugars, vegetable oil, or proteins, are not considered here.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

There has been an ardent interest in herbivore saliva due to its roles in inducing plant defenses and its impact on herbivore fitness. Two techniques are described that inhibit the secretion of labial saliva from the caterpillar, Helicoverpa zea, during feeding. The methods rely on cauterizing the caterpillar's spinneret, the principal secretory structure of the labial glands, or surgically removing the labial salivary gland. Both methods successfully inhibit secretion of saliva and the principal salivary enzyme glucose oxidase. Caterpillars with inhibited saliva production feed at similar rates as the untreated caterpillars, pupate, and emerge as adults. Glucose oxidase has been suggested to increase the caterpillar's survival through the suppression of inducible anti-herbivore defenses in plants. Tobacco (Nicotiana tabacum) leaves fed on by caterpillars with ablated salivary glands had significantly higher levels of nicotine, an inducible anti-herbivore defense compound of tobacco, than leaves fed upon by caterpillars with intact labial salivary glands. Tomato (Lycopersicon esculentum) leaves fed upon by caterpillars with suppressed salivary secretions showed greatly reduced evidence of hydrogen peroxide formation compared to leaves fed upon by intact caterpillars. These two methods are useful techniques for determining the role that saliva plays in manipulating plant anti-herbivore defenses.