954 resultados para Paraventricular nucleus of the hypothalamus
Resumo:
Deep brain stimulation (DBS) for Parkinson's disease often alleviates the motor symptoms, but causes cognitive and emotional side effects in a substantial number of cases. Identification of the motor part of the subthalamic nucleus (STN) as part of the presurgical workup could minimize these adverse effects. In this study, we assessed the STN's connectivity to motor, associative, and limbic brain areas, based on structural and functional connectivity analysis of volunteer data. For the structural connectivity, we used streamline counts derived from HARDI fiber tracking. The resulting tracks supported the existence of the so-called "hyperdirect" pathway in humans. Furthermore, we determined the connectivity of each STN voxel with the motor cortical areas. Functional connectivity was calculated based on functional MRI, as the correlation of the signal within a given brain voxel with the signal in the STN. Also, the signal per STN voxel was explained in terms of the correlation with motor or limbic brain seed ROI areas. Both right and left STN ROIs appeared to be structurally and functionally connected to brain areas that are part of the motor, associative, and limbic circuit. Furthermore, this study enabled us to assess the level of segregation of the STN motor part, which is relevant for the planning of STN DBS procedures.
Resumo:
By means of confocal laser scanning microscopy and indirect fluorescence experiments we have examined the behavior of heat-shock protein 70 (HSP70) within the nucleus as well as of a nuclear matrix protein (M(r) = 125 kDa) during a prolonged heat-shock response (up to 24 h at 42 degrees C) in HeLa cells. In control cells HSP70 was mainly located in the cytoplasm. The protein translocated within the nucleus upon cell exposure to hyperthermia. The fluorescent pattern revealed by monoclonal antibody to HSP70 exhibited several changes during the 24-h-long incubation. The nuclear matrix protein showed changes in its location that were evident as early as 1 h after initiation of heat shock. After 7 h of treatment, the protein regained its original distribution. However, in the late stages of the hyperthermic treatment (17-24 h) the fluorescent pattern due to 125-kDa protein changed again and its original distribution was never observed again. These results show that HSP70 changes its localization within the nucleus conceivably because it is involved in solubilizing aggregated polypeptides present in different nuclear regions. Our data also strengthen the contention that proteins of the insoluble nucleoskeleton are involved in nuclear structure changes that occur during heat-shock response.
Resumo:
The fine morphology, size, and perichromatin granule frequency were analysed in brown adipocyte nuclei from hibernating, arousing, and euthermic dormice, Muscardinus avellanarius. Unusual nuclear structural constituents such as nuclear amorphous bodies, coiled body-like constituents and bundles of nucleoplasmic filaments were described as typical of hibernating nuclei. Morphometrical findings showed significant difference in total nuclear and nucleolar size in the three physiological conditions investigated as well as decreasing frequency of perichromatin granules in nuclei of hibernating to arousing to euthermic animals. A possible involvement of these granules in the intranuclear transport or storage of pre-mRNA is discussed in the context of other experimental evidence.
Resumo:
Résumé : La microautophagie du noyau est un processus découvert chez la levure S. cerevisiae qui vise la dégradation de portions nucléaires dans la lumière vacuolaire. Ce processus appelé PMN (de l'anglais Piecemeal Microautophagy of the Nucleus) est induit dans des conditions de stress cellulaire comme la privation de nutriments, mais également par l'utilisation d'une drogue : la rapamycine. La PMN est due à l'interaction directe d'une protéine de la membrane externe de l'enveloppe nucléaire Nvj1p, et d'une protéine de la membrane vacuolaire Vac8p. L'interaction de ces deux protéines forme la jonction noyau-vacuole. Cette jonction guide la formation d'une invagination, qui englobe et étire vers la lumière vacuolaire une partie du noyau sous la forme d'un sac. Il s'en suit la libération d'une vésicule dégradée par les hydrolases. Les mécanismes moléculaires intervenant à différentes étapes de ce processus sont inconnus. Le but de ma thèse est de mettre en évidence de nouveaux acteurs qui interviennent dans la PMN. Dans la première partie de cette étude, nous présentons une procédure de sélection à la recherche de candidats jouant un rôle dans la PMN. Cette sélection a été effectuée dans la collection de mutants commercialisée chez Euroscarf. La procédure reposait sur l'observation que le nucléole (représenté par Nop1p) est le substrat préférentiel de la PMN dans des expériences de microscopie faites après induction de la PMN avec la rapamycine. Nous avons ainsi transformé la collection de mutants avec un plasmide portant le marqueur du nucléole Noplp. Par la suite, nous avons cherché par microscopie les mutants incapables de transférer Nop1p du noyau à la vacuole. Nous avons trouvé 318 gènes présentant un défaut de transfert de Nop1p par PMN. Ces gènes ont été classés par grandes familles fonctionnelles et aussi par leur degré de défaut de PMN. Egalement dans cette partie de l'étude, nous avons décrit des mutants impliqués dans le processus, à des étapes différentes. Dans la seconde partie de l'étude, nous avons regardé l'implication et le rôle de la V-ATPase, (une pompe à protons de la membrane vacuolaire}, sélectionnée parmi les candidats, dans le processus de PMN. Les inhibiteurs de ce complexe, comme la concanamycineA, bloquent l'activité PMN et semblent affecter le processus à deux étapes différentes. D'un autre côté, les jonctions «noyau-vacuole »forment une barrière de diffusion au niveau de la membrane vacuolaire, de laquelle Vphlp, une protéine de la V-ATPase, est exclue.
Resumo:
Neuropathic pain is a major health issue and is frequently accompanied by allodynia (painful sensations in response to normally non-painful stimulations), and unpleasant paresthesia/dysesthesia, pointing to alterations in sensory pathways normally dedicated to the processing of non-nociceptive information. Interestingly, mounting evidence indicate that central glial cells are key players in allodynia, partly due to changes in the astrocytic capacity to scavenge extracellular glutamate and gamma-aminobutyric acid (GABA), through changes in their respective transporters (EAAT and GAT). In the present study, we investigated the glial changes occurring in the dorsal column nuclei, the major target of normally innocuous sensory information, in the rat spared nerve injury (SNI) model of neuropathic pain. We report that together with a robust microglial and astrocytic reaction in the ipsilateral gracile nucleus, the GABA transporter GAT-1 is upregulated with no change in GAT-3 or glutamate transporters. Furthermore, [(3)H] GABA reuptake on crude synaptosome preparation shows that transporter activity is functionally increased ipsilaterally in SNI rats. This GAT-1 upregulation appears evenly distributed in the gracile nucleus and colocalizes with astrocytic activation. Neither glial activation nor GAT-1 modulation was detected in the cuneate nucleus. Together, the present results point to GABA transport in the gracile nucleus as a putative therapeutic target against abnormal sensory perceptions related to neuropathic pain.
Resumo:
Emerging evidence suggests that the hypocretinergic system is involved in addictive behavior. In this study, we investigated the role of these hypothalamic neuropeptides in anxiety-like responses of nicotine and stress-induced reinstatement of nicotine-seeking behavior. Acute nicotine (0.8 mg/kg, s.c.) induced anxiogenic-like effects in the elevated plus-maze and activated the paraventricular nucleus of thehypothalamus (PVN) as revealed by c-Fos expression. Pretreatment with the hypocretin receptor 1 (Hcrtr-1) antagonist SB334867 orpreprohypocretin gene deletion blocked both nicotine effects. In the PVN, SB334867 also prevented the activation of corticotrophinreleasing factor (CRF) and arginine-vasopressin (AVP) neurons, which expressed Hcrtr-1. In addition, an increase of the percentage of c-Fos-positive hypocretin cells in the perifornical and dorsomedial hypothalamic (PFA/DMH) areas was found after nicotine (0.8 mg/kg,s.c.) administration. Intracerebroventricular infusion of hypocretin-1 (Hcrt-1) (0.75 nmol/1 l) or footshock stress reinstated a previouslyextinguished nicotine-seeking behavior. The effects of Hcrt-1 were blocked by SB334867, but not by the CRF1 receptor antagonistantalarmin. Moreover, SB334867 did not block CRF-dependent footshock-induced reinstatement of nicotine-seeking while antalarmin was effective in preventing this nicotine motivational response. Therefore, the Hcrt system interacts with CRF and AVP neurons in the PVN and modulates the anxiogenic-like effects of nicotine whereas Hcrt and CRF play a different role in the reinstatement of nicotineseeking.Indeed, Hcrt-1 reinstates nicotine-seeking through a mechanism independent of CRF activation whereas CRF mediates the reinstatement induced by stress.
Resumo:
Allodynia (pain in response to normally non painful stimulation) and paresthesia (erroneous sensory experience) are two debilitating symptoms of neuropathic pain. These stem, at least partly, from profound changes in the non-nociceptive sensory pathway that comprises large myelinated neuronal afferents terminating in the gracile and cuneate nuclei. Further than neuronal changes, well admitted evidence indicates that glial cells (especially in the spinal cord) are key actors in neuropathic pain, in particular the possible alteration in astrocytic capacity to reuptake neurotransmitters (glutamate and GABA). Yet, the possibility of such a changed astrocytic scavenging capacity remains unexplored in the dorsal column pathway. The present study was therefore undertaken to assess whether peripheral nerve injury (spared nerve injury model, SNI) could trigger a glial reaction, and especially changes in glutamate and GABA transporters, in the gracile nucleus. SNI surgery was performed on male Sprague-Dawley rats. Seven days after surgery, rats were used for immunofluorescence (fixation and brain slicing), western-blot (fresh brain freezing and protein extraction) or GABA reuptake on synaptosomes. We found that SNI results in a profound glial reaction in the ipsilateral gracile nucleus. This reaction was characterized by an enhanced immunolabelling for microglial marker Iba1 as well as astrocytic protein GFAP (further confirmed by western-blot, p <0.05, n = 7). These changes were not observed in sham animals. Immunofluorescence and western-blot analysis shows that the GABA transporter GAT-1 is upregulated in the ipsilateral gracile nucleus (p <0.001; n = 7), with no detectable change in GAT-3 or glutamate transporters EAAT-1 and EAAT-2. Double immunoflurescence shows that GAT-1 and GFAP colocalize within the same cells. Furthermore, the upregulation of GFAP and GAT-1 were shown to occur all along the rostrocaudal axis of the gracile nucleus. Finally, synaptosomes from ipsilateral gracile nucleus show an increased capacity to reuptake GABA. Together, the data presented herein show that glial cells in the gracile nucleus react to neuropathic lesion, in particular through an upregulation of the GABA transporter GAT-1. Hence, this study points to role of an increased GABA transport in the dorsal column nuclei in neuropathic pain, calling attention to GAT-1 as a putative future pharmacological target to treat allodynia and paresthesia.
Resumo:
Recently in this journal, Alkemade and Forstmann again challenged the evidence for a tripartite organisation to the subthalamic nucleus (STN) (Alkemade & Forstmann 2014). Additionally, they raised specific issues with the earlier published results using 3T MRI to perform in vivo diffusion weighted imaging (DWI) based segmentation of the STN (Lambert et al. 2012). Their comments reveal a common misconception related to the underlying methodologies used, which we clarify in this reply, in addition to highlighting how their current conclusions are synonymous with our original paper. The ongoing debate, instigated by the controversies surrounding STN parcellation, raises important implications for the assumptions and methodologies employed in mapping functional brain anatomy, both in vivo and ex vivo, and reveals a fundamental emergent problem with the current techniques. These issues are reviewed, and potential strategies that could be developed to manage them in the future are discussed further.
Resumo:
We analyze the timing of photons observed by the MAGIC telescope during a flare of the active galactic nucleus Mkn 501 for a possible correlation with energy, as suggested by some models of quantum gravity (QG), which predict a vacuum refractive index similar or equal to 1 + (E/M-QGn)(n), n = 1, 2. Parametrizing the delay between gamma-rays of different energies as Delta t = +/-tau E-1 or Delta t = +/-tau E-q(2), we find tau(1) = (0.030 +/- 0.012) s/GeV at the 2.5-sigma level, and tau(q) = (3.71 +/- 2.57) x 10(-6) s/GeV2, respectively. We use these results to establish lower limits M-QG1 > 0.21 X 10(18) GeV and M-QG2 > 0.26 x 10(11) GeV at the 95% C.L. Monte Carlo studies confirm the MAGIC sensitivity to propagation effects at these levels. Thermal plasma effects in the source are negligible, but we cannot exclude the importance of some other source effect.
Resumo:
The ventral striatum / nucleus accumbens has been implicated in the craving for drugs and alcohol which is a major reason for relapse of addicted people. Craving might be induced by drug-related cues. This suggests that disruption of craving-related neural activity in the nucleus accumbens may significantly reduce craving in alcohol-dependent patients. Here we report on preliminary clinical and neurophysiological evidence in three male patients who were treated with high frequency deep brain stimulation of the nucleus accumbens bilaterally. All three had been alcohol dependent for many years, unable to abstain from drinking, and had experienced repeated relapses prior to the stimulation. After the operation, craving was greatly reduced and all three patients were able to abstain from drinking for extended periods of time. Immediately after the operation but prior to connection of the stimulation electrodes to the stimulator, local field potentials were obtained from the externalized cables in two patients while they performed cognitive tasks addressing action monitoring and incentive salience of drug related cues. LFPs in the action monitoring task provided further evidence for a role of the nucleus accumbens in goal-directed behaviors. Importantly, alcohol related cue stimuli in the incentive salience task modulated LFPs even though these cues were presented outside of the attentional focus. This implies that cue-related craving involves the nucleus accumbens and is highly automatic.
Resumo:
The nucleus tractus solitarii (NTS) receives afferent projections from the arterial baroreceptors, carotid chemoreceptors and cardiopulmonary receptors and as a function of this information produces autonomic adjustments in order to maintain arterial blood pressure within a narrow range of variation. The activation of each of these cardiovascular afferents produces a specific autonomic response by the excitation of neuronal projections from the NTS to the ventrolateral areas of the medulla (nucleus ambiguus, caudal and rostral ventrolateral medulla). The neurotransmitters at the NTS level as well as the excitatory amino acid (EAA) receptors involved in the processing of the autonomic responses in the NTS, although extensively studied, remain to be completely elucidated. In the present review we discuss the role of the EAA L-glutamate and its different receptor subtypes in the processing of the cardiovascular reflexes in the NTS. The data presented in this review related to the neurotransmission in the NTS are based on experimental evidence obtained in our laboratory in unanesthetized rats. The two major conclusions of the present review are that a) the excitation of the cardiovagal component by cardiovascular reflex activation (chemo- and Bezold-Jarisch reflexes) or by L-glutamate microinjection into the NTS is mediated by N-methyl-D-aspartate (NMDA) receptors, and b) the sympatho-excitatory component of the chemoreflex and the pressor response to L-glutamate microinjected into the NTS are not affected by an NMDA receptor antagonist, suggesting that the sympatho-excitatory component of these responses is mediated by non-NMDA receptors.
Resumo:
We investigated the effect of L-NAME, a nitric oxide (NO) inhibitor and sodium nitroprusside (SNP), an NO-donating agent, on pilocarpine-induced alterations in salivary flow, mean arterial blood pressure (MAP) and heart rate (HR) in rats. Male Holtzman rats (250-300 g) were implanted with a stainless steel cannula directly into the median preoptic nucleus (MnPO). Pilocarpine (10, 20, 40, 80, 160 µg) injected into the MnPO induced an increase in salivary secretion (P<0.01). Pilocarpine (1, 2, 4, 8, 16 mg/kg) ip also increased salivary secretion (P<0.01). Injection of L-NAME (40 µg) into the MnPO prior to pilocarpine (10, 20, 40, 80, 160 µg) injected into the MnPO or ip (1, 2, 4, 8, 16 mg/kg) increased salivary secretion (P<0.01). SNP (30 µg) injected into the MnPO or ip prior to pilocarpine attenuated salivary secretion (P<0.01). Pilocarpine (40 µg) injection into the MnPO increased MAP and decreased HR (P<0.01). Pilocarpine (4 mg/kg body weight) ip produced a decrease in MAP and an increase in HR (P<0.01). Injection of L-NAME (40 µg) into the MnPO prior to pilocarpine potentiated the increase in MAP and reduced HR (P<0.01). SNP (30 µg) injected into the MnPO prior to pilocarpine attenuated (100%) the effect of pilocarpine on MAP, with no effect on HR. Administration of L-NAME (40 µg) into the MnPO potentiated the effect of pilocarpine injected ip. SNP (30 µg) injected into the MnPO attenuated the effect of ip pilocarpine on MAP and HR. The present study suggests that in the rat MnPO 1) NO is important for the effects of pilocarpine on salivary flow, and 2) pilocarpine interferes with blood pressure and HR (side effects of pilocarpine), that is attenuated by NO.
Resumo:
Dipyrone administered intravenously (iv) delays gastric emptying (GE) in rats. The objectives of the present study were to assess: 1) the effect of the dose of dipyrone and time after its iv administration on GE in rats, 2) the effect of subdiaphragmatic vagotomy (VgX) and bilateral electrolytic lesion of the paraventricular nucleus (PVNX) on the delayed GE induced by the drug, and 3) the intracerebroventricular (icv) action of dipyrone and of one of its metabolites, 4-aminoantipyrine on GE. Male Wistar rats received saline labeled with phenol red intragastrically as a test meal. GE was indirectly assessed by the determination of percent gastric retention (GR) of the test meal 10 min after administration by gavage. Dipyrone delays GE in a dose- and time-dependent manner. Thirty minutes after the iv administration of 80 mg/kg dipyrone, the animals showed significantly higher GR (mean = 62.6%) compared to those receiving vehicle (31.5%). VgX and PVNX significantly reduced the iv effect of 80 mg/kg dipyrone (mean %GR: VgX = 28.3 vs Sham = 55.5 and PVNX = 34.5 vs Sham = 52.2). Icv administration of 4 µmol dipyrone caused a significant increase in GR (54.1%) of the test meal 10 min later, whereas administration of 4 µmol 4-aminoantipyrine had no effect (34.4%). Although the dipyrone dose administered icv was 16 times lower than that applied iv, for the same time of action (10 min), the GR of animals that received the drug icv (54.1%) or iv (54.5%) did not differ significantly. In conclusion, the present results suggest that the effect of dipyrone in delaying GE is due to the action of the drug on the central nervous system, with the participation of the PVN and of the vagus nerve.