956 resultados para Parallel Evolutionary Algorithms


Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper presents a paralleled Two-Pass Hexagonal (TPA) algorithm constituted by Linear Hashtable Motion Estimation Algorithm (LHMEA) and Hexagonal Search (HEXBS) for motion estimation. In the TPA, Motion Vectors (MV) are generated from the first-pass LHMEA and are used as predictors for second-pass HEXBS motion estimation, which only searches a small number of Macroblocks (MBs). We introduced hashtable into video processing and completed parallel implementation. We propose and evaluate parallel implementations of the LHMEA of TPA on clusters of workstations for real time video compression. It discusses how parallel video coding on load balanced multiprocessor systems can help, especially on motion estimation. The effect of load balancing for improved performance is discussed. The performance of the algorithm is evaluated by using standard video sequences and the results are compared to current algorithms.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper presents an improved parallel Two-Pass Hexagonal (TPA) algorithm constituted by Linear Hashtable Motion Estimation Algorithm (LHMEA) and Hexagonal Search (HEXBS) for motion estimation. Motion Vectors (MV) are generated from the first-pass LHMEA and used as predictors for second-pass HEXBS motion estimation, which only searches a small number of Macroblocks (MBs). We used bashtable into video processing and completed parallel implementation. The hashtable structure of LHMEA is improved compared to the original TPA and LHMEA. We propose and evaluate parallel implementations of the LHMEA of TPA on clusters of workstations for real time video compression. The implementation contains spatial and temporal approaches. The performance of the algorithm is evaluated by using standard video sequences and the results are compared to current algorithms.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A hybridised and Knowledge-based Evolutionary Algorithm (KEA) is applied to the multi-criterion minimum spanning tree problems. Hybridisation is used across its three phases. In the first phase a deterministic single objective optimization algorithm finds the extreme points of the Pareto front. In the second phase a K-best approach finds the first neighbours of the extreme points, which serve as an elitist parent population to an evolutionary algorithm in the third phase. A knowledge-based mutation operator is applied in each generation to reproduce individuals that are at least as good as the unique parent. The advantages of KEA over previous algorithms include its speed (making it applicable to large real-world problems), its scalability to more than two criteria, and its ability to find both the supported and unsupported optimal solutions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The sampling of certain solid angle is a fundamental operation in realistic image synthesis, where the rendering equation describing the light propagation in closed domains is solved. Monte Carlo methods for solving the rendering equation use sampling of the solid angle subtended by unit hemisphere or unit sphere in order to perform the numerical integration of the rendering equation. In this work we consider the problem for generation of uniformly distributed random samples over hemisphere and sphere. Our aim is to construct and study the parallel sampling scheme for hemisphere and sphere. First we apply the symmetry property for partitioning of hemisphere and sphere. The domain of solid angle subtended by a hemisphere is divided into a number of equal sub-domains. Each sub-domain represents solid angle subtended by orthogonal spherical triangle with fixed vertices and computable parameters. Then we introduce two new algorithms for sampling of orthogonal spherical triangles. Both algorithms are based on a transformation of the unit square. Similarly to the Arvo's algorithm for sampling of arbitrary spherical triangle the suggested algorithms accommodate the stratified sampling. We derive the necessary transformations for the algorithms. The first sampling algorithm generates a sample by mapping of the unit square onto orthogonal spherical triangle. The second algorithm directly compute the unit radius vector of a sampling point inside to the orthogonal spherical triangle. The sampling of total hemisphere and sphere is performed in parallel for all sub-domains simultaneously by using the symmetry property of partitioning. The applicability of the corresponding parallel sampling scheme for Monte Carlo and Quasi-D/lonte Carlo solving of rendering equation is discussed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper we introduce a new algorithm, based on the successful work of Fathi and Alexandrov, on hybrid Monte Carlo algorithms for matrix inversion and solving systems of linear algebraic equations. This algorithm consists of two parts, approximate inversion by Monte Carlo and iterative refinement using a deterministic method. Here we present a parallel hybrid Monte Carlo algorithm, which uses Monte Carlo to generate an approximate inverse and that improves the accuracy of the inverse with an iterative refinement. The new algorithm is applied efficiently to sparse non-singular matrices. When we are solving a system of linear algebraic equations, Bx = b, the inverse matrix is used to compute the solution vector x = B(-1)b. We present results that show the efficiency of the parallel hybrid Monte Carlo algorithm in the case of sparse matrices.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Many evolutionary algorithm applications involve either fitness functions with high time complexity or large dimensionality (hence very many fitness evaluations will typically be needed) or both. In such circumstances, there is a dire need to tune various features of the algorithm well so that performance and time savings are optimized. However, these are precisely the circumstances in which prior tuning is very costly in time and resources. There is hence a need for methods which enable fast prior tuning in such cases. We describe a candidate technique for this purpose, in which we model a landscape as a finite state machine, inferred from preliminary sampling runs. In prior algorithm-tuning trials, we can replace the 'real' landscape with the model, enabling extremely fast tuning, saving far more time than was required to infer the model. Preliminary results indicate much promise, though much work needs to be done to establish various aspects of the conditions under which it can be most beneficially used. A main limitation of the method as described here is a restriction to mutation-only algorithms, but there are various ways to address this and other limitations.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper is concerned with the uniformization of a system of afine recurrence equations. This transformation is used in the design (or compilation) of highly parallel embedded systems (VLSI systolic arrays, signal processing filters, etc.). In this paper, we present and implement an automatic system to achieve uniformization of systems of afine recurrence equations. We unify the results from many earlier papers, develop some theoretical extensions, and then propose effective uniformization algorithms. Our results can be used in any high level synthesis tool based on polyhedral representation of nested loop computations.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The past decade has witnessed explosive growth of mobile subscribers and services. With the purpose of providing better-swifter-cheaper services, radio network optimisation plays a crucial role but faces enormous challenges. The concept of Dynamic Network Optimisation (DNO), therefore, has been introduced to optimally and continuously adjust network configurations, in response to changes in network conditions and traffic. However, the realization of DNO has been seriously hindered by the bottleneck of optimisation speed performance. An advanced distributed parallel solution is presented in this paper, as to bridge the gap by accelerating the sophisticated proprietary network optimisation algorithm, while maintaining the optimisation quality and numerical consistency. The ariesoACP product from Arieso Ltd serves as the main platform for acceleration. This solution has been prototyped, implemented and tested. Real-project based results exhibit a high scalability and substantial acceleration at an average speed-up of 2.5, 4.9 and 6.1 on a distributed 5-core, 9-core and 16-core system, respectively. This significantly outperforms other parallel solutions such as multi-threading. Furthermore, augmented optimisation outcome, alongside high correctness and self-consistency, have also been fulfilled. Overall, this is a breakthrough towards the realization of DNO.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The increasing demand for cheaper-faster-better services anytime and anywhere has made radio network optimisation much more complex than ever before. In order to dynamically optimise the serving network, Dynamic Network Optimisation (DNO), is proposed as the ultimate solution and future trend. The realization of DNO, however, has been hindered by a significant bottleneck of the optimisation speed as the network complexity grows. This paper presents a multi-threaded parallel solution to accelerate complicated proprietary network optimisation algorithms, under a rigid condition of numerical consistency. ariesoACP product from Arieso Ltd serves as the platform for parallelisation. This parallel solution has been benchmarked and results exhibit a high scalability and a run-time reduction by 11% to 42% based on the technology, subscriber density and blocking rate of a given network in comparison with the original version. Further, it is highly essential that the parallel version produces equivalent optimisation quality in terms of identical optimisation outputs.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We present some additions to a fuzzy variable radius niche technique called Dynamic Niche Clustering (DNC) (Gan and Warwick, 1999; 2000; 2001) that enable the identification and creation of niches of arbitrary shape through a mechanism called Niche Linkage. We show that by using this mechanism it is possible to attain better feature extraction from the underlying population.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper, a continuation of a variable radius niche technique called Dynamic Niche Clustering developed by (Gan & Warwick, 1999) is presented. The technique employs a separate dynamic population of overlapping niches that coexists alongside the normal population. An empirical analysis of the updated methodology on a large group of standard optimisation test-bed functions is also given. The technique is shown to perform almost as well as standard fitness sharing with regards to stability and the accuracy of peak identification, but it outperforms standard fitness sharing with regards to time complexity. It is also shown that the technique is capable of forming niches of varying size depending on the characteristics of the underlying peak that the niche is populating.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Evolutionary developmental genetics brings together systematists, morphologists and developmental geneticists; it will therefore impact on each of these component disciplines. The goals and methods of phylogenetic analysis are reviewed here, and the contribution of evolutionary developmental genetics to morphological systematics, in terms of character conceptualisation and primary homology assessment, is discussed. Evolutionary developmental genetics, like its component disciplines phylogenetic systematics and comparative morphology, is concerned with homology concepts. Phylogenetic concepts of homology and their limitations are considered here, and the need for independent homology statements at different levels of biological organisation is evaluated. The role of systematics in evolutionary developmental genetics is outlined. Phylogenetic systematics and comparative morphology will suggest effective sampling strategies to developmental geneticists. Phylogenetic systematics provides hypotheses of character evolution (including parallel evolution and convergence), stimulating investigations into the evolutionary gains and losses of morphologies. Comparative morphology identifies those structures that are not easily amenable to typological categorisation, and that may be of particular interest in terms of developmental genetics. The concepts of latent homology and genetic recall may also prove useful in the evolutionary interpretation of developmental genetic data.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In a world where massive amounts of data are recorded on a large scale we need data mining technologies to gain knowledge from the data in a reasonable time. The Top Down Induction of Decision Trees (TDIDT) algorithm is a very widely used technology to predict the classification of newly recorded data. However alternative technologies have been derived that often produce better rules but do not scale well on large datasets. Such an alternative to TDIDT is the PrismTCS algorithm. PrismTCS performs particularly well on noisy data but does not scale well on large datasets. In this paper we introduce Prism and investigate its scaling behaviour. We describe how we improved the scalability of the serial version of Prism and investigate its limitations. We then describe our work to overcome these limitations by developing a framework to parallelise algorithms of the Prism family and similar algorithms. We also present the scale up results of a first prototype implementation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Distributed Rule Induction (DRI) project at the University of Portsmouth is concerned with distributed data mining algorithms for automatically generating rules of all kinds. In this paper we present a system architecture and its implementation for inducing modular classification rules in parallel in a local area network using a distributed blackboard system. We present initial results of a prototype implementation based on the Prism algorithm.