855 resultados para Parallel Computation
Resumo:
Contemporary coronary magnetic resonance angiography techniques suffer from signal-to-noise ratio (SNR) constraints. We propose a method to enhance SNR in gradient echo coronary magnetic resonance angiography by using sensitivity encoding (SENSE). While the use of sensitivity encoding to improve SNR seems counterintuitive, it can be exploited by reducing the number of radiofrequency excitations during the acquisition window while lowering the signal readout bandwidth, therefore improving the radiofrequency receive to radiofrequency transmit duty cycle. Under certain conditions, this leads to improved SNR. The use of sensitivity encoding for improved SNR in three-dimensional coronary magnetic resonance angiography is investigated using numerical simulations and an in vitro and an in vivo study. A maximum 55% SNR enhancement for coronary magnetic resonance angiography was found both in vitro and in vivo, which is well consistent with the numerical simulations. This method is most suitable for spoiled gradient echo coronary magnetic resonance angiography in which a high temporal and spatial resolution is required.
Resumo:
Massively parallel signature sequencing (MPSS) generates millions of short sequence tags corresponding to transcripts from a single RNA preparation. Most MPSS tags can be unambiguously assigned to genes, thereby generating a comprehensive expression profile of the tissue of origin. From the comparison of MPSS data from 32 normal human tissues, we identified 1,056 genes that are predominantly expressed in the testis. Further evaluation by using MPSS tags from cancer cell lines and EST data from a wide variety of tumors identified 202 of these genes as candidates for encoding cancer/testis (CT) antigens. Of these genes, the expression in normal tissues was assessed by RT-PCR in a subset of 166 intron-containing genes, and those with confirmed testis-predominant expression were further evaluated for their expression in 21 cancer cell lines. Thus, 20 CT or CT-like genes were identified, with several exhibiting expression in five or more of the cancer cell lines examined. One of these genes is a member of a CT gene family that we designated as CT45. The CT45 family comprises six highly similar (>98% cDNA identity) genes that are clustered in tandem within a 125-kb region on Xq26.3. CT45 was found to be frequently expressed in both cancer cell lines and lung cancer specimens. Thus, MPSS analysis has resulted in a significant extension of our knowledge of CT antigens, leading to the discovery of a distinctive X-linked CT-antigen gene family.
Resumo:
Extensive gene flow between wheat (Triticum sp.) and several wild relatives of the genus Aegilops has recently been detected despite notoriously high levels of selfing in these species. Here, we assess and model the spread of wheat alleles into natural populations of the barbed goatgrass (Aegilops triuncialis), a wild wheat relative prevailing in the Mediterranean flora. Our sampling, based on an extensive survey of 31 Ae. triuncialis populations collected along a 60 km × 20 km area in southern Spain (Grazalema Mountain chain, Andalousia, totalling 458 specimens), is completed with 33 wheat cultivars representative of the European domesticated pool. All specimens were genotyped with amplified fragment length polymorphism with the aim of estimating wheat admixture levels in Ae. triuncialis populations. This survey first confirmed extensive hybridization and backcrossing of wheat into the wild species. We then used explicit modelling of populations and approximate Bayesian computation to estimate the selfing rate of Ae. triuncialis along with the magnitude, the tempo and the geographical distance over which wheat alleles introgress into Ae. triuncialis populations. These simulations confirmed that extensive introgression of wheat alleles (2.7 × 10(-4) wheat immigrants for each Ae. triuncialis resident, at each generation) into Ae. triuncialis occurs despite a high selfing rate (Fis ≈ 1 and selfing rate = 97%). These results are discussed in the light of risks associated with the release of genetically modified wheat cultivars in Mediterranean agrosystems.
Resumo:
Phenotypic convergence is a widespread and well-recognized evolutionary phenomenon. However, the responsible molecular mechanisms remain often unknown mainly because the genes involved are not identified. A well-known example of physiological convergence is the C4 photosynthetic pathway, which evolved independently more than 45 times [1]. Here, we address the question of the molecular bases of the C4 convergent phenotypes in grasses (Poaceae) by reconstructing the evolutionary history of genes encoding a C4 key enzyme, the phosphoenolpyruvate carboxylase (PEPC). PEPC genes belong to a multigene family encoding distinct isoforms of which only one is involved in C4 photosynthesis [2]. By using phylogenetic analyses, we showed that grass C4 PEPCs appeared at least eight times independently from the same non-C4 PEPC. Twenty-one amino acids evolved under positive selection and converged to similar or identical amino acids in most of the grass C4 PEPC lineages. This is the first record of such a high level of molecular convergent evolution, illustrating the repeatability of evolution. These amino acids were responsible for a strong phylogenetic bias grouping all C4 PEPCs together. The C4-specific amino acids detected must be essential for C4 PEPC enzymatic characteristics, and their identification opens new avenues for the engineering of the C4 pathway in crops.
Resumo:
The Wigner higher order moment spectra (WHOS)are defined as extensions of the Wigner-Ville distribution (WD)to higher order moment spectra domains. A general class oftime-frequency higher order moment spectra is also defined interms of arbitrary higher order moments of the signal as generalizations of the Cohen’s general class of time-frequency representations. The properties of the general class of time-frequency higher order moment spectra can be related to theproperties of WHOS which are, in fact, extensions of the properties of the WD. Discrete time and frequency Wigner higherorder moment spectra (DTF-WHOS) distributions are introduced for signal processing applications and are shown to beimplemented with two FFT-based algorithms. One applicationis presented where the Wigner bispectrum (WB), which is aWHOS in the third-order moment domain, is utilized for thedetection of transient signals embedded in noise. The WB iscompared with the WD in terms of simulation examples andanalysis of real sonar data. It is shown that better detectionschemes can be derived, in low signal-to-noise ratio, when theWB is applied.
Resumo:
Tässä diplomityössä tutkitaan dispariteettikartan laskennan tehostamista interpoloimalla. Kolmiomittausta käyttämällä stereokuvasta muodostetaan ensin harva dispariteettikartta, jonka jälkeen koko kuvan kattava dispariteettikartta muodostetaan interpoloimalla. Kolmiomittausta varten täytyy tietää samaa reaalimaailman pistettä vastaavat kuvapisteet molemmissa kameroissa. Huolimatta siitä, että vastaavien pisteiden hakualue voidaan pienentää kahdesta ulottuvuudesta yhteen ulottuvuuteen käyttämällä esimerkiksi epipolaarista geometriaa, on laskennallisesti tehokkaampaa määrittää osa dispariteetikartasta interpoloimalla, kuin etsiä vastaavia kuvapisteitä stereokuvista. Myöskin johtuen stereonäköjärjestelmän kameroiden välisestä etäisyydestä, kaikki kuvien pisteet eivät löydy toisesta kuvasta. Näin ollen on mahdotonta määrittää koko kuvan kattavaa dispariteettikartaa pelkästään vastaavista pisteistä. Vastaavien pisteiden etsimiseen tässä työssä käytetään dynaamista ohjelmointia sekä korrelaatiomenetelmää. Reaalimaailman pinnat ovat yleisesti ottaen jatkuvia, joten geometrisessä mielessä on perusteltua approksimoida kuvien esittämiä pintoja interpoloimalla. On myöskin olemassa tieteellistä näyttöä, jonkamukaan ihmisen stereonäkö interpoloi objektien pintoja.
Resumo:
Objective: We propose and validate a computer aided system to measure three different mandibular indexes: cortical width, panoramic mandibular index and, mandibular alveolar bone resorption index. Study Design: Repeatability and reproducibility of the measurements are analyzed and compared to the manual estimation of the same indexes. Results: The proposed computerized system exhibits superior repeatability and reproducibility rates compared to standard manual methods. Moreover, the time required to perform the measurements using the proposed method is negligible compared to perform the measurements manually. Conclusions: We have proposed a very user friendly computerized method to measure three different morphometric mandibular indexes. From the results we can conclude that the system provides a practical manner to perform these measurements. It does not require an expert examiner and does not take more than 16 seconds per analysis. Thus, it may be suitable to diagnose osteoporosis using dental panoramic radiographs.
Resumo:
In two previous papers [J. Differential Equations, 228 (2006), pp. 530 579; Discrete Contin. Dyn. Syst. Ser. B, 6 (2006), pp. 1261 1300] we have developed fast algorithms for the computations of invariant tori in quasi‐periodic systems and developed theorems that assess their accuracy. In this paper, we study the results of implementing these algorithms and study their performance in actual implementations. More importantly, we note that, due to the speed of the algorithms and the theoretical developments about their reliability, we can compute with confidence invariant objects close to the breakdown of their hyperbolicity properties. This allows us to identify a mechanism of loss of hyperbolicity and measure some of its quantitative regularities. We find that some systems lose hyperbolicity because the stable and unstable bundles approach each other but the Lyapunov multipliers remain away from 1. We find empirically that, close to the breakdown, the distances between the invariant bundles and the Lyapunov multipliers which are natural measures of hyperbolicity depend on the parameters, with power laws with universal exponents. We also observe that, even if the rigorous justifications in [J. Differential Equations, 228 (2006), pp. 530-579] are developed only for hyperbolic tori, the algorithms work also for elliptic tori in Hamiltonian systems. We can continue these tori and also compute some bifurcations at resonance which may lead to the existence of hyperbolic tori with nonorientable bundles. We compute manifolds tangent to nonorientable bundles.
Resumo:
Drug metabolism can produce metabolites with physicochemical and pharmacological properties that differ substantially from those of the parent drug, and consequently has important implications for both drug safety and efficacy. To reduce the risk of costly clinical-stage attrition due to the metabolic characteristics of drug candidates, there is a need for efficient and reliable ways to predict drug metabolism in vitro, in silico and in vivo. In this Perspective, we provide an overview of the state of the art of experimental and computational approaches for investigating drug metabolism. We highlight the scope and limitations of these methods, and indicate strategies to harvest the synergies that result from combining measurement and prediction of drug metabolism.
Resumo:
Tight regulation of the MAP kinase Hog1 is crucial for survival under changing osmotic conditions. Interestingly, we found that Hog1 phosphorylates multiple upstream components, implying feedback regulation within the signaling cascade. Taking advantage of an unexpected link between glucose availability and Hog1 activity, we used quantitative single cell measurements and computational modeling to unravel feedback regulation operating in addition to the well-known adaptation feedback triggered by glycerol accumulation. Indeed, we found that Hog1 phosphorylates its activating kinase Ssk2 on several sites, and cells expressing a non-phosphorylatable Ssk2 mutant are partially defective for feedback regulation and proper control of basal Hog1 activity. Together, our data suggest that Hog1 activity is controlled by intertwined regulatory mechanisms operating with varying kinetics, which together tune the Hog1 response to balance basal Hog1 activity and its steady-state level after adaptation to high osmolarity.
Resumo:
The perceived low levels of genetic diversity, poor interspecific competitive and defensive ability, and loss of dispersal capacities of insular lineages have driven the view that oceanic islands are evolutionary dead ends. Focusing on the Atlantic bryophyte flora distributed across the archipelagos of the Azores, Madeira, the Canary Islands, Western Europe, and northwestern Africa, we used an integrative approach with species distribution modeling and population genetic analyses based on approximate Bayesian computation to determine whether this view applies to organisms with inherent high dispersal capacities. Genetic diversity was found to be higher in island than in continental populations, contributing to mounting evidence that, contrary to theoretical expectations, island populations are not necessarily genetically depauperate. Patterns of genetic variation among island and continental populations consistently fitted those simulated under a scenario of de novo foundation of continental populations from insular ancestors better than those expected if islands would represent a sink or a refugium of continental biodiversity. We, suggest that the northeastern Atlantic archipelagos have played a key role as a stepping stone for transoceanic migrants. Our results challenge the traditional notion that oceanic islands are the end of the colonization road and illustrate the significant role of oceanic islands as reservoirs of novel biodiversity for the assembly of continental floras.
Resumo:
We prove the existence and local uniqueness of invariant tori on the verge of breakdown for two systems: the quasi-periodically driven logistic map and the quasi-periodically forced standard map. These systems exemplify two scenarios: the Heagy-Hammel route for the creation of strange non- chaotic attractors and the nonsmooth bifurcation of saddle invariant tori. Our proofs are computer- assisted and are based on a tailored version of the Newton-Kantorovich theorem. The proofs cannot be performed using classical perturbation theory because the two scenarios are very far from the perturbative regime, and fundamental hypotheses such as reducibility or hyperbolicity either do not hold or are very close to failing. Our proofs are based on a reliable computation of the invariant tori and a careful study of their dynamical properties, leading to the rigorous validation of the numerical results with our novel computational techniques.
Resumo:
Objective: We propose and validate a computer aided system to measure three different mandibular indexes: cortical width, panoramic mandibular index and, mandibular alveolar bone resorption index. Study Design: Repeatability and reproducibility of the measurements are analyzed and compared to the manual estimation of the same indexes. Results: The proposed computerized system exhibits superior repeatability and reproducibility rates compared to standard manual methods. Moreover, the time required to perform the measurements using the proposed method is negligible compared to perform the measurements manually. Conclusions: We have proposed a very user friendly computerized method to measure three different morphometric mandibular indexes. From the results we can conclude that the system provides a practical manner to perform these measurements. It does not require an expert examiner and does not take more than 16 seconds per analysis. Thus, it may be suitable to diagnose osteoporosis using dental panoramic radiographs