956 resultados para Pancreas -- physiology
Resumo:
Few environmental factors have a larger influence on animal energetics than temperature, a fact that makes thermoregulation a very important process for survival. In general, endothermic species, i.e., mammals and birds, maintain a constant body temperature (Tb) in fluctuating environmental temperatures using autonomic and behavioural mechanisms. Most of the knowledge on thermoregulatory physiology has emerged from studies using mammalian species, particularly rats. However, studies with all vertebrate groups are essential for a more complete understanding of the mechanisms involved in the regulation of Tb. Ectothermic vertebrates-fish, amphibians and reptiles-thermoregulate essentially by behavioural mechanisms. With few exceptions, both endotherms and ectotherms develop fever (a regulated increase in Tb) in response to exogenous pyrogens, and regulated hypothermia (anapyrexia) in response to hypoxia. This review focuses on the mechanisms, particularly neuromediators and regions in the central nervous system, involved in thermoregulation in vertebrates, in conditions of euthermia, fever and anapyrexia. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
Motilin-immunoreactive cells in the duodenum, pyloric stomach and pancreas of Caiman latirostris and Caiman crocodilus were investigated using region specific antisera for porcine and canine motilin molecules. Motilin-immunoreactive cells were found in the duodenum, pyloric stomach and pancreas of both caiman species. These cells were primarily open-type endocrine ones in the epithelium of the duodenum and pyloric stomach. Motilin-immunoreactive cells were observed in both the exocrine and endocrine portions of the pancreas, and frequently exhibited one or more cytoplasmic processes of variable length. Since motilin-immunoreactive cells do not cross-react with serotonin or any of the other pancreatic and gut hormones, they are considered to be cell type independent from any of the other known pancreatic or gut endocrine cells. The molecular similarity between caiman motilin and porcine and canine motilins and the heterogeneity of the motilin molecule in the caiman digestive system is discussed.
Resumo:
The objective of the present investigation was to determine the course of maternal blood glucose levels in pregnant rats and its repercussions on the glucose levels and pancreas of their newborn pups. Diabetes was induced by alloxan (42 mg/kg body weight) and streptozotocin (40 mg/kg). Sixty-two pregnant Wistar rats weighing 180 to 250 g were divided into a control group and two groups with moderate (120 to 200 mg/dl glucose) and severe diabetes (greater than 200 mg/dl glucose), respectively. Blood glucose levels were measured in the dams on the 1st, 14th, and 21st days of pregnancy and in the pups at birth. The results were pooled for each litter. The fetal pancreases were removed after cesarian section performed on the 21st day of pregnancy, pooled for each litter and processed for histopathologic examination by light microscopy. Maternal blood glucose levels were significantly increased compared with the first day of pregnancy in both normal and diabetic rats starting on the 14th day of pregnancy. Fetal blood glucose levels correlated with maternal levels. The histopathologic changes characterized by vacuolization and basophilia of the cytoplasm of endocrine pancreas of newborn pups from darns with moderate or severe diabetes suggested pancreatic hyperactivity.
Resumo:
Leptospira species colonize a significant proportion of rodent populations worldwide and produce life-threatening infections in accidental hosts, including humans. Complete genome sequencing of Leptospira interrogans serovar Copenhageni and comparative analysis with the available Leptospira interrogans serovar Lai genome reveal that despite overall genetic similarity there are significant structural differences, including a large chromosomal inversion and extensive variation in the number and distribution of insertion sequence elements. Genome sequence analysis elucidates many of the novel aspects of leptospiral physiology relating to energy metabolism, oxygen tolerance, two-component signal transduction systems, and mechanisms of pathogenesis. A broad array of transcriptional regulation proteins and two new families of afimbrial adhesins which contribute to host tissue colonization in the early steps of infection were identified. Differences in genes involved in the biosynthesis of lipopolysaccharide 0 side chains between the Copenhageni and Lai serovars were identified, offering an important starting point for the elucidation of the organism's complex polysaccharide surface antigens. Differences in adhesins and in lipopolysaccharide might be associated with the adaptation of serovars Copenhageni and Lai to different animal hosts. Hundreds of genes encoding surface-exposed lipoproteins and transmembrane outer membrane proteins were identified as candidates for development of vaccines for the prevention of leptospirosis.
Resumo:
The purpose of this study was to assess the temporal relationship between pancreas transplant and the development of electrophysiological changes in the sciatic and caudal nerves of alloxan-induced diabetic rats. Nerve conduction studies were performed in diabetic rats subjected to pancreas transplantation at 4, 12, and 24 weeks after diabetes onset, using nondiabetic and untreated diabetic rats as controls. Nerve conduction data were significantly altered in untreated diabetic control rats up to 48 weeks of follow-up in all time points. Rats subjected to pancreas transplantation up to 4 and 12 weeks after diabetes onset had significantly increased motor nerve conduction velocity with improvement of wave amplitude, distal latency, and temporal dispersion of compound muscle action potential in all follow-up periods (P<0.05); these parameters remained abnormal when pancreas transplantation were performed late at 24 weeks. Our results suggest that early pancreas transplant (at 4-12 weeks) may be effective in controlling diabetic neuropathy in this in vivo model.
Resumo:
Changes in activities of Cu-Zn superoxide dismutase (SOD- E.C.1.15.1.1.) and lactate dehydrogenase (LDH- E.C.1.1.1.27.) and levels of copper, total protein, triglycerides, phospholipids and total lipids were investigated in pancreas of rats after intratracheal administration of NiCl2 (8.4 mumol/kg). Nickel chloride induced increased SOD activity in pancreas and erythrocytes. This elevation was related to increased copper and decreased phospholipid content in pancreas of these animals. In conclusion, the ability of an animal to tolerate nickel chloride induced damage was governed by a delicate balance between the generation of cytotoxic agents and the various pancreas defense capabilities.
Resumo:
We studied the synergistic effect of glucose and prolactin (PRL) on insulin secretion and GLUT2 expression in cultured neonatal rat islets. After 7 days in culture, basal insulin secretion (2.8 mM glucose) was similar in control and PRL-treated islets (1.84 ± 0.06% and 2.08 ± 0.07% of the islet insulin content, respectively). At 5.6 and 22 mM glucose, insulin secretion was significantly higher in PRL-treated than in control islets, achieving 1.38 ± 0.15% and 3.09 ± 0.21 % of the islet insulin content in control and 2.43 ± 0.16% and 4.31 ± 0.24% of the islet insulin content in PRL-treated islets, respectively. The expression of the glucose transporter GLUT2 in B-cell membranes was dose-dependently increased by exposure of the islet to increasing glucose concentrations. This effect was potentiated in islets cultured for 7 days in the presence of 2 μg/ml PRL. At 5.6 and 10 mM glucose, the increase in GLUT2 expression in PRL-treated islets was 75% and 150% higher than that registered in the respective control. The data presented here indicate that insulin secretion, induced by different concentrations of glucose, correlates well with the expression of the B-cell-specific glucose transporter GLUT2 in pancreatic islets.
Resumo:
This research evaluated the bone repair process in surgical defects created on the parietal bones of diabetic rabbits using the guided bone regeneration technique to observe the effects of alloxan in the induction of diabetes mellitus. Twenty-four adult rabbits were divided into three study groups: control (C), diabetic (D) and diabetic associated to polytetrafluoroethylene (PTFE) membrane (D-PTFE). For diabetes induction the animals received one dose of monohydrated alloxan (90 mg/kg) by intravenous administration in the auricular or femoral vein. In group D-PTFE the membrane covered both the floor and the surface of the bone defect. In groups D and C, the bone defect was filled up with blood clot. The specimens were fixed in 10% formol and prepared for histomorphometric analysis. The results showed that the 90 mg/kg dose of monohydrate alloxan was sufficient to promote diabetes mellitus when administered in the auricular vein. Bone regeneration was slower in the diabetic group when compared with the control and diabetic-PTFE groups, but there was no significant statistical difference between the two experimental groups (D and D-PTFE). The oral and general clinical complications among the diabetics were weight loss, polyuria, polyphagia and severe chronic gingivitis.
Resumo:
We present the first complete study of basic laboratory-measured physiological variables (metabolism, thermoregulation, evaporative water loss, and ventilation) for a South American marsupial, the gracile mouse opossum (Gracilinanus agilis). Body temperature (Tb) was thermolabile below thermoneutrality (Tb = 33.5°C), but a substantial gradient between Tb and ambient temperature (Ta) was sustained even at Ta = 12°C (Tb = 30.6°C). Basal metabolic rate of 1.00 mL O2 g-1 h-1 at Ta = 30°C conformed to the general allometric relationship for marsupials, as did wet thermal conductance (5.7 mL O2 g-1 h-1 °C-1). Respiratory rate, tidal volume, and minute volume at thermoneutrality matched metabolic demand such that O2 extraction was 12.4%, and ventilation increased in proportion to metabolic rate at low T a. Ventilatory accommodation of increased metabolic rate at low Ta was by an increase in respiratory rate rather than by tidal volume or O2 extraction. Evaporative water loss at the lower limit of thermoneutrality conformed to that of other marsupials. Relative water economy was negative at thermoneutrality but positive below Ta = 12°C. Interestingly, the Neotropical gracile mouse opossums have a more positive water economy at low Ta than an Australian arid-zone marsupial, perhaps reflecting seasonal variation in water availability for the mouse opossum. Torpor occurred at low Ta, with spontaneous arousal when . T b > 20°C. Torpor resulted in absolute energy and water savings but lower relative water economy. We found no evidence that gracile mouse opossums differ physiologically from other marsupials, despite their Neotropical distribution, sympatry with placental mammals, and long period of separation from Australian marsupials. © 2009 by The University of Chicago. All rights reserved.
Resumo:
To evaluate the effect of acute exercise and exercise training at the anaerobic threshold (AT) intensity on aerobic conditioning and insulin secretion by pancreatic islets, adult male Wistar rats were submitted to the lactate minimum test (LMT) for AT determination. Half of the animals were submitted to swimming exercise training (trained), 1 h/day, 5 days/week during 8 weeks, with an overload equivalent to the AT. The other half was kept sedentary. At the end of the experimental period, the rats were submitted to an oral glucose tolerance test and to another LMT. Then, the animals were sacrificed at rest or immediately after 20 minutes of swimming exercise at the AT intensity for pancreatic islets isolation. At the end of the experiment mean workload (% bw) at AT was higher and blood lactate concentration (mmol/L) was lower in the trained than in the control group. Rats trained at the AT intensity showed no alteration in the areas under blood glucose and insulin during OGTT test. Islet insulin content of trained rats was higher than in the sedentary rats while islet glucose uptake did not differ among the groups. The static insulin secretion in response to the high glucose concentration (16.7 mM) of the sedentary group at rest was lower than the sedentary group submitted to the acute exercise and the inverse was observed in relation to the trained groups. physical training at the AT intensity improved the aerobic condition and altered insulin secretory pattern by pancreatic islets. © 2010 Landes Bioscience.