988 resultados para Palmetto Sites Program
Resumo:
The western flank of the Great Bahama Bank, drilled during ODP Leg 166 at seven sites, represents a prograding carbonate sequence from late Oligocene to Holocene [Eberli et al., Proc. ODP Init. Reports 166 (1997)]. The signatures of the detrital input and of diagenetic alteration are evident in clay enriched intervals from the most distal Sites 1006 and 1007 in the Straits of Florida. Mineralogical and chemical investigations (XRD, TEM, SEM, ICP-MS) run on bulk rocks and on the clay fractions enable the origin and evolution of silicate parageneses to be characterized. Plio-Pleistocene silt and clay interbeds contain detrital clay assemblages comprising chlorite, illite, interstratified illite smectite, smectite, kaolinite and palygorskite. The greater smectite input within late Pliocene units than in Pleistocene oozes may relate either varying source areas or change in paleoclimatic conditions and weathering intensity. The clay intervals from Miocene-upper Oligocene wackestone sections are fairly different, with prevalent smectite in the fine fraction, whose high crystallinity and Mg contents that point towards an authigenic origin. The lower Miocene section, below 1104 mbsf, at depths where compaction features are well developed, is particularly characterized by abundant authigenic Na-K-clinoptilolite filling foraminifer tests. The authigenic smectite and clinoptilolite paragenesis is recorded by the chemical trends, both of the sediment and the interstitial fluid. This diagenetic evolution implies Si- and Mg rich fluids circulating in deeper and older sequences. For lack of any local volcaniclastic input, the genesis of zeolite and the terms of water rock interaction are discussed. The location of the diagenetic front correlates with that of the seismic sequence boundary P2 dated as 23.2 Ma. This correspondence may allow the chronostratigraphic significance of some specific seismic reflections to be reassessed.
Resumo:
Late Neogene biostratigraphy of diatoms has been investigated from two sites occupied during Ocean Drilling Program (ODP) Leg 186 off the coast of northeast Japan. A unique aspect of ODP Leg 186 was the installation of two permanent borehole geophysical observatories at the deep-sea terrace along the Japan Trench. The Neogene subsidence history of the forearc was documented from both Sites 1150 and 1151, and Quaternary to middle Miocene (16 Ma) sediments represent a nearly continuous stratigraphic sequence including numerous ash records, especially during the past 9 m.y. Diatoms are found in most samples in variable abundance and in a moderately well preserved state throughout the sequence. The assemblages are characterized consistently by age-diagnostic species of Denticulopsis and Neodenticula found in regions of high surface water productivity typical of middle to high latitudes. The Neogene North Pacific diatom zonation divides the Miocene to Quaternary sequences fundamentally well, except that the latest Miocene through early Pliocene Thalassiosira oestrupii Subzone is not applicable. Miocene and late Pliocene through Pleistocene diatom datum levels that have been proven to be of great stratigraphic utility in the North Pacific Ocean appear to be nearly isochronous within the level of resolution constrained by core catcher sample spacing. The taxonomy and stratigraphy of previously described species determined to be useful across the Miocene/Pliocene boundary have been investigated on the basis of the evolutionary changes within the Thalassiosira trifulta group. The biostratigraphically important forms belonging to the genus Thalassiosira have been illustrated with scanning electron micrographs.
Resumo:
Interstitial waters from four sites of the Japan Sea (794 to 797) have been analyzed for stable isotopes (delta D, delta11B, delta18O, and delta34S) and 87Sr/86Sr, besides major and minor ions. The isotopic composition is dominated by organic matter degradation, alteration of ash layers and volcaniclastic sands, silica transformation (opal A/CT), and basement alteration. Organic matter degradation and corresponding sulfate reduction leads to 32S depletion and is dependent upon sedimentation rate. The remaining sulfate reservoir is characterized by very "heavy" delta34S ratios, up to +93 ? (rel. CDT = Canyon Diabolo Troilite). "Barite fronts," which may develop in such sediments, should also be characterized by very "heavy" sulfur isotopes. The alteration of volcaniclastic material in the Quaternary sections influences the delta18O (-1.5 ? shift) and delta11B (desorption and later adsorption of "labile"11B). A pronounced positive delta11B anomaly at Site 795 represents the depth range of preferential 10B uptake by alteration products of the ash layers. At Site 796 delta D, delta11B, and 87Sr/86Sr are severely affected by alteration processes of volcaniclastic sands. The opal A/CT transformation may influence the oxygen isotopes and serves as a potential source for B, which is liberated at this interval at Site 795. This positive B anomaly is not reflected in the delta11B profile. Basement alteration processes dominate the sedimentary sequence below the opal A/CT transition, which serves as a chemical and physical boundary. The decreases in delta D and delta18O are probably related to a "paleo ocean water reservoir" situated in the permeable Layer II of the oceanic crust, as is indicated by the positive correlation between these two parameters. Besides Mg, alkalies and delta18O basement rocks also serve as a sink for 11 B (Site 795) and are the source for the Ca and Sr increases, as is documented by the less radiogenic 87Sr/86Sr ratio. 87Sr/86Sr ratios for the lowermost pore waters from Site 795 (0.70529) are comparable to those from volcaniclastic rocks from the "Green Tuff' region (0.704 to 0.706) and oil field brines from the Niigata Oil Field.
Resumo:
During Ocean Drilling Program (ODP) Leg 189, five sites were drilled in the Tasmanian Seaway with the objective to constrain the paleoceanographic implications of the separation of Australia from Antarctica and to elucidate the paleoceanographic developments throughout the Neogene (Shipboard Scientific Party, 2001a, doi:10.2973/odp.proc.ir.189.101.2001). Sediments ranged from Cretaceous to Quaternary in age and provided the opportunity to describe the paleoenvironments in the Tasman Seaway prior to, during, and after the separation of Australia and Antarctica. This study will focus on postseparation distribution of calcareous nannofossils through the Miocene. Miocene sediments were recovered at all five Leg 189 sites, and four of these sites were studied in detail to determine the calcareous nannofossil biostratigraphy. Hole 1168A, located on the western Tasmanian margin, contains a fairly continuous Miocene record and could be easily zoned using the Okada and Bukry (1980, doi:10.1016/0377-8398(80)90016-X) zonation. Analysis of sediments from Hole 1169A, located on the western South Tasman Rise, was not included in this study, as the recovered sediments were highly disturbed and unsuitable for further analysis (Shipboard Scientific Party, 2001c, doi:10.2973/odp.proc.ir.189.104.2001). Holes 1170A, 1171A, and 1171C are located on the South Tasman Rise south of the modern Subtropical Front (STF). They revealed incomplete Miocene sequences intersected by an early Miocene and late Miocene hiatus and could only be roughly zoned using the Okada and Bukry zonation. Similarly, Hole 1172A, located on the East Tasman Plateau, contains a Miocene sequence with a hiatus in the early Miocene and in the late Miocene and could only be roughly zoned using the Okada and Bukry (1980, doi:10.1016/0377-8398(80)90016-X) zonation. This study aims to improve calcareous nannofossil biostratigraphic resolution in this sector of the mid to high southern latitudes. This paper will present abundance, preservation, and stratigraphic distribution of calcareous nannofossils through the Miocene and focus mainly on biozonal assignment.
Resumo:
Strontium isotopic compositions of ichthyoliths (microscopic fish remains) in deep-sea clays recovered from the North Pacific Ocean (ODP holes 885A, 886B, and 886C) are used to provide stratigraphic age control within these otherwise undatable sediments. Age control within the deep-sea clays is crucial for determining changes in sedimentation rates, and for calculating fluxes of chemical and mineral components to the sediments. The Sr isotopic ages are in excellent agreement with independent age datums from above (diatom ooze), below (basalt basement) and within (Cretaceous-Tertiary boundary) the clay deposit. The 87Sr/86Sr ratios of fish teeth from the top of the pelagic clay unit (0.7089891), indicate an Late Miocene age (5.8 Ma), as do radiolarian and diatom biostratigraphic ages in the overlying diatom ooze. The 87Sr/86Sr ratio (0.707887) is consistent with a Cretaceous-Tertiary boundary age, as identified by anomalously high iridium, shocked quartz, and sperules in Hole 886C. The 87Sr/86Sr ratios of pretreated fish teeth from the base of the clay unit are similar to Late Cretaceous seawater (0.707779-0.7075191), consistent with radiometric ages from the underlying basalt of 81 Ma. Calculation of sedimentation rates based on Sr isotopic ages from Hole 886C indicate an average sedimentation rate of 17.7 m/Myr in Unit II (diatom ooze), 0.55 m/Myr in Unit IIIa (pelagic clay), and 0.68 m/Myr in Unit IIIb (distal hydrothermal precipitates). The Sr isotopic ages indicate a period of greatly reduced sedimentation (or possible hiatus) between about 35 and 65 Ma (Eocene-Paleocene), with a linear sedimentation rate of only 0.04 m/Myr The calculated sedimentation rates are generally inversely proportional to cobalt accumulation rates and ichthyolith abundances. However, discrepancies between Sr isotope ages and cobalt accumulation ages of l0-15 Myr are evident, particularly in the middle of the clay unit IIIa (Oligocene-Paleocene).
Resumo:
Sulfide mineral major and trace element analyses were performed on more than 50 polished slabs representing mineralization from three seafloor hydrothermal massive sulfide deposits. Samples from the Bent Hill and ODP Mound massive sulfide deposits, both on the Juan de Fuca Ridge, can be contrasted with samples from the Trans-Atlantic Geotraverse (TAG) hydrothermal mound on the Mid-Atlantic Ridge. The massive sulfide at Bent Hill is predominantly pyrite and pyrrhotite, with increasing amounts of copper-bearing sulfide minerals at the base of the massive sulfide body and through the stockwork to an interval 200 m below seafloor that hosts high copper mineralization (Deep Copper Zone). ODP Mound contains much more abundant sphalerite and copper-bearing sulfides as compared to either Bent Hill or TAG, which are predominantly pyrite with much less abundant chalcopyrite. Copper-bearing sulfides from the Deep Copper Zone beneath Bent Hill and the lowest sampled interval of ODP Mound are petrographically and chemically similar, but distinct from copper-bearing minerals higher in either sequence.
Resumo:
A geochemical, mineralogical, and isotopic database comprising 75 analyses of Ocean Drilling Program (ODP) Leg 193 samples has been prepared, representing the variable dacitic volcanic facies and alteration types observed in drill core from the subsurface of the PACMANUS hydrothermal system (Table T1. The data set comprises major elements, trace and rare earth elements (REE), various volatiles (S, F, Cl, S, SO4, CO2, and H2O), and analyses of 18O and 86Sr/87Sr for bulk rock and mineral separates (anhydrite). Furthermore, normative mineral proportions have been calculated based on the results of X-ray diffraction (XRD) analysis (Table T2) using the SOLVER function of the Microsoft Excel program. Several of the samples analyzed consist of mesoscopically distinctive domains, and separate powders were generated to investigate these hand specimen-scale heterogeneities. Images of all the samples are collated in Figure F1, illustrating the location of each powder analyzed and documenting which measurements were performed.
Resumo:
The organic geochemistry of Sites 1108 and 1109 of the Woodlark Basin, offshore Papua New Guinea, was studied to determine whether thermally mature hydrocarbons were present in the penetrated section and, if present, whether they are genetically related to the penetrated "coaly" interval. Both the organic carbon and pyrolysis data indicate that there is no significant hydrocarbon source-rock potential at Site 1108. The hydrocarbons encountered during drilling appear to be indigenous and not migrated products or contaminants. In contrast, the coaly interval at Site 1109 contains zones with significant hydrocarbon-generation potential. Several independent lines of evidence indicate that the coaly sequence encountered at Site 1109 is thermally immature. The Site 1108 methane stable-carbon isotope composition does not display a clear trend with depth as would be expected if it was solely reflecting a maturation profile. The measured isotopic composition of methane has most probably been altered by fractionation during sample handling and storage. This fractionation would result in isotopically heavier values than would be obtained on free gas. The organic geochemical data gathered indicate that Site 1108 can be safely revisited and that the organic-rich sediments encountered at Site 1109 were not the source of the gas encountered at Site 1108.
Resumo:
An intensive stable isotopic investigation was conducted on sediments recovered from the Great Australian Bight during Ocean Drilling Program Leg 182 at Sites 1127, 1129, and 1131. The sites comprise a transect from the shelf edge to upper slope through a thick sequence of predominately Quaternary cool-water carbonate sediments. Detailed mineralogic and stable isotopic (d18O and d13C) analyses of sediments from a total of 306 samples are presented from all three sites.
Resumo:
A unique set of geochemical pore-water data, characterizing the sulfate reduction and uppermost methanogenic zones, has been collected at the Blake Ridge (offshore southeastern North America) from Ocean Drilling Program (ODP) Leg 164 cores and piston cores. The d13C values of dissolved CO2 (sum CO2) are as 13C-depleted as -37.7 per mil PDB (Site 995) at the sulfate-methane interface, reflecting a substantial contribution of isotopically light carbon from methane. Although the geochemical system is complex and difficult to fully quantify, we use two methods to constrain and illustrate the intensity of anaerobic methane oxidation in Blake Ridge sediments. An estimate using a two-component mixing model suggests that ~24% of the carbon residing in the sum CO2 pool is derived from biogenic methane. Independent diagenetic modeling of a methane concentration profile (Site 995) indicates that peak methane oxidation rates approach 0.005 µmol/cm**3/yr, and that anaerobic methane oxidation is responsible for consuming ~35% of the total sulfate flux into the sediments. Thus, anaerobic methane oxidation is a significant biogeochemical sink for sulfate, and must affect interstitial sulfate concentrations and sulfate gradients. Such high proportions of sulfate depletion because of anaerobic methane oxidation are largely undocumented in continental rise sediments with overlying oxic bottom waters. We infer that the additional amount of sulfate depleted through anaerobic methane oxidation, fueled by methane flux from below, causes steeper sulfate gradients above methane-rich sediments. Similar pore water chemistries should occur at other methane-rich, continental-rise settings associated with gas hydrates.
Resumo:
During Leg 125 of the Ocean Drilling Program, nine sites were drilled in the Mariana and Izu-Bonin areas. The sediments recovered range in age from early Pliocene to late Pleistocene in the Mariana Region and from middle Eocene to late Pleistocene in the Izu-Bonin region. This contribution concerns the biostratigraphic study of the latest Miocene (CN9b Subzone) to late Pleistocene interval. Aquantitative analysis of all calcareous nannofossil associations was conducted for the interval encompassing late Miocene to the top of the early Pliocene. Moreover, the genera Discoaster, Amaurolithus, and Ceratolithus were quantitatively investigated from the late Miocene to late Pliocene interval. Some bioevents were identified, and variations in the composition of assemblages were linked to climatic changes.
Resumo:
The terrigenous mineral fraction of sediments recovered by drilling during Ocean Drilling Program Leg 167 at Sites 1018 and 1020 is used to evaluate changes in the source and transport of fine-grained terrigenous sediment and its relation to regional climates and the paleoceanographic evolution of the California Current system during the late Pleistocene. Preliminary time scales developed by correlation of oxygen isotope stratigraphies with the global SPECMAP record show average linear sedimentation rates in excess of 100 m/m.y., which provide an opportunity for high-resolution studies of terrigenous flux, grain size, and mineralogy. The mass flux of terrigenous minerals at Site 1018 varies from 5 to 30 g/(cm**2 x k.y.) and displays a general trend toward increased flux during glacials. The terrigenous record at Site 1020 shows a similar pattern of increased glacial input, but overall accumulation rates are significantly lower. Spectral analysis demonstrates that most of this variability is concentrated in frequency bands related to orbital cycles of eccentricity, tilt, and precession. Detailed grain-size analysis performed on the isolated terrigenous mineral fraction shows that sediments from Site 1018 are associated with higher energy transport and depositional regimes than those found at Site 1020. Grain-size data are remarkably uniform throughout the last 500 k.y., with no discernible difference observed between glacial and interglacial size distributions within each site. X-ray diffraction analysis of the <2-µm clay component suggests that the deposition of minerals found at Site 1020 is consistent with transport from a southern source during intervals of increased terrigenous input.
Resumo:
During Ocean Drilling Program (ODP) Leg 178, eight holes were drilled at three sites (1095, 1096, and 1101) on the continental rise along the western Antarctic Peninsula. The rise sediments proved to be good paleomagnetic recorders and provided continuous magnetostratigraphic records at all three sites. Biosiliceous microfossils, particularly diatoms and radiolarians, were present in the upper Miocene through lower Pliocene sections. In the upper Pliocene to Pleistocene sections, biosiliceous microfossils were rare but calcareous nannofossils and foraminifers were present. This paper summarizes the biostratigraphy and magnetostratigraphy of Leg 178 continental rise sites and is the first attempt at direct calibration of Antarctic biostratigraphic events to the geomagnetic polarity timescale in the Pacific sector of the Southern Ocean.
Resumo:
Pore fluid chlorinity lower than seawater is often observed in accretionary wedges and one of the possible causes of pore water freshening is the smectite to illite reaction. This reaction occurs during diagenesis in the 80-150°C temperature range. Low chlorinity anomalies observed at the toe of accretionary wedges have thus been interpreted as evidence for lateral fluid migration from inner parts of the wedge and the seismogenic zone. However, temperature conditions in Nankai Trough are locally high enough for the smectite to illite transition to occur in situ. Cation exchange capacity is here used as a proxy for smectite content in the sediment and the amount of interlayer water released during the smectite to illite reaction represents in average 12 water molecules per cation charge. Water and chloride budget calculations show that there is enough smectite to explain the chlorinity anomalies by in situ reactions. The shape of the pore fluid chlorinity profiles can be explained if compaction is also taken into account in the model. Lateral flow is not needed. This argument, based solely on chloride concentration, does not imply that lateral flow is absent. However, previous estimations of lateral fluid fluxes, and of the duration of transient flow events along the de.collement, should be reconsidered.
Resumo:
Paleogene stable oxygen and carbon isotopes were measured in formainifera from ODP Sites 689 and 690 at Maud Rise in the Atlantic Ocean sector of the Southern Ocean, and from Sites 738, 744, 748 and 749 at the southern Kerguelen Plateau in the Indian Ocean sector. These data were compared with sedimentological data from the same sample set. Both benthic and planktic d18O values document a cooling trend beginning around 49.5 Ma at all sites. During the late middle Eocene planktic d18O values indicate a steepening latitudinal temperature gradient from 14°C at the northern sites towards 10°C at the southernmost sites. Terrigeneous sand grains of probably ice rafted origin and clay mineral assemblages point to the existence of a limited East Antarctic ice cap with some glaciers reaching sea level as early as middle Eocene time around 45.5 Ma. Between 45 and 40 Ma, average paleotemperatures were between 5° and 7°C in deep and intermediate water masses, while near-surface water masses ranged between 6° and 10°C. During the late Eocene, between 40 and 36 Ma, average temperatures further decreased to 4°-5°C in the deep and intermediate water masses and to 5°-8°C near the sea surface. Abruptly increasing d18O values at approximately 35.9 Ma exactly correlate with a sharp pulse in the deposition of ice-rafted material on the Kerguelen Plateau, a dramatic change in clay mineral composition, and an altered Southern Ocean circulation indicated by a differentiation of benthic d13C values between sites, increasing opal concentrations and decreasing carbonate contents. For planktic and benthic foraminifera this d18O increase ranges between 1.0 and 1.3 per mil, and between 0.9 and 1.4 per mil, respectively. We favour a hypothesis that explains most of the d18O shift at 35.9 Ma with a buildup of a continental East Antarctic ice sheet. Consequently, relatively warm Oligocene Antarctic surface water temperatures probably are explained by a temperate, wet-based nature of the ice sheet. This would also aid in the fast build-up of an ice sheet by enhancing the moisture transport on to the continent.