949 resultados para PSEUDOMONAS SP STRAIN-CF600
Resumo:
An unknown Gram-positive, catalase-positive, facultatively anaerobic, non-spore-forming, coccus-shaped bacterium originating from sediment was characterized using phenotypic, molecular chemical and molecular phylogenetic methods. Chemical studies revealed the presence of a cell-wall murein based on LL-diaminopimelic acid (type LL-Dpm-glycine(1)), a complex mixture of saturated, monounsaturated and iso- and anteiso-methyl-branched, non-hydroxylated, long-chain cellular fatty acids and tetrahydrogenated menaquinones with eight isoprene units [MK-8(H-4)] as the major respiratory lipoquinone. This combination of characteristics somewhat resembled members of the suborder Micrococcineae, but did not correspond to any currently described species. Comparative 16S rRNA gene sequencing confirmed that the unidentified coccus-shaped organism is a member of the Actinobacteria and represents a hitherto-unknown subline related to, albeit different from, a number of taxa including Intrasporangium, Janibacter, Terrabacter, Terracoccus and Ornithinicoccus. Based on phenotypic and phylogenetic considerations, it is proposed that the unknown bacterium originating from lake sediment be classified as a new genus and species, Arsenicicoccus bolidensis gen. nov., sp. nov. (type strain CCUG 47306(T) = DSM 15745(T)).
Resumo:
Phenotypic and phylogenetic studies were performed on four unidentified Gram-positive staining, catalase-negative, cc-hemolytic Streptococcus-like organisms recovered from the teeth of horses. SDS PAGE analysis of whole-cell proteins and comparative 16S rRNA gene sequencing demonstrated the four strains were highly related to each other but that they did not correspond to any recognised species of the genus Streptococcus. Phylogenetic analysis based on 16S rRNA gene sequences showed the unidentified organisms form a hitherto unknown sub-line within the Streptococcus genus, displaying a close affinity with Streptococcus mutans, Streptococcus ferus and related organisms. Sequence divergence values of > 5% with thew and other reference streptococcal species however demonstrated the organisms from equine sources represent a novel species. Based on the phenotypic distinctiveness of the new bacterium and molecular chemical and molecular genetic evidence, it is proposed that the unknown species be classified as Streptococcus devriesei sp. nov. The type strain of Streptococcus devriesei is CCUG 47155(T) (= CIP 107809T).
Resumo:
An unusual catalase-positive, Gram-positive, coccus-shaped bacterium that originated from a human blood specimen was subjected to a polyphasic taxonomic study. Cell-wall murein and lipid composition analyses indicated that the unknown isolate was a member of the genus Luteococcus. The results of comparative 16S rRNA gene sequence analysis were consistent with chemotaxonomic findings and showed that the unidentified bacterium represents a hitherto unknown sublineage, within the genus Luteococcus that is closely related to, but distinct from, Luteococcus japonicus. On the basis of both phenotypic and phylogenetic evidence, it is proposed that the unknown bacterium from human blood should be classified as Luteococcus sanguinis sp. nov., with the type strain CCUG 33897(T) (=CIP 107216(T)).
Resumo:
A previously unknown Gram-positive, non-spore-forming, non-lipophilic, catalase-positive, irregular rod-shaped bacterium (M/106/00/5(T)) was isolated, in mixed culture, from the penis of a Caspian seal (Phoca caspica). The strain was a facultative anaerobe that was able to grow at 22 and 42 degreesC. Comparative 16S rRNA gene sequencing showed that the organism formed a hitherto unknown subline within the genus Corynebacterium. Sequence divergence values of more than 5 % from other described Corynebacterium species, together with phenotypic differences, showed that the unidentified bacterium represents a previously unrecognized member of this genus. On the basis of phenotypic and phylogenetic considerations, it is proposed that the unknown bacterium isolated from a Caspian seal (strain M/106/00/5(T) = CCUG 44566(T)=CIP 107965(T)) be classified as the type strain of a novel species of the genus Corynebacterium, Corynebacterium caspium sp. nov.
Resumo:
An unknown Gram-positive, catalase-negative, facultatively anaerobic, non-spore-forming, rod-shaped bacterium originating from semen of a pig was characterized using phenotypic, molecular chemical and molecular phylogenetic methods. Chemical studies revealed the presence of a directly cross-linked cell wall murein based on L-lysine and a DNA G + C content of 39 mol%. Comparative 16S rRNA gene sequencing showed that the unidentified rod-shaped organism formed a hitherto unknown subline related, albeit loosely, to Alkalibacterium olivapovliticus, Alloiococcus otitis, Dolosigranulum pigrum and related organisms, in the low-G + C-content Gram-positive bacteria. However, sequence divergence values of > 11 % from these recognized taxa. clearly indicated that the novel bacterium represents a separate genus. Based on phenotypic and phylogenetic considerations, it is proposed that the unknown bacterium from pig semen be classified as a new genus and species, Allofustis seminis gen. nov., sp. nov. The type strain is strain 01-570-1(T) (=CCUG 45438(T)=CIP 107425(T)).
Resumo:
A previously undescribed, Gram-positive, catalase-negative, coccus-shaped organism that originated from a human wound was subjected to taxonomic study. On the basis of its cellular morphology and the results of biochemical testing, the unknown organism was identified tentatively as a member of the genus Helcococcus, but it did not correspond to either of the two recognized species of this genus. Comparative 16S rRNA gene sequencing studies confirmed that the bacterium was associated phylogenetically with the genus Helcococcus, with the unidentified organism forming a hitherto unknown subline within the genus. On the basis of biochemical, molecular chemical and molecular phylogenetic evidence, it is proposed that the unknown organism that was recovered from a human wound should be classified as a novel species of the genus Helcococcus, namely Helcococcus sueciensis sp. nov. The type strain is CCUG 47334(T) ( = CIP 108183(T)).
Resumo:
Phenotypic and phylogenetic studies were performed on three isolates of an unknown Gram-negative, facultatively anaerobic, non-motile, yellow-pigmented, rod-shaped organism isolated from raw sewage. 16S rRNA gene sequence analysis indicated that these strains were members of the Bergeyella-Chryseobacterium-Riemerella branch of the family Flavobacteriaceae. The unknown bacterium was readily distinguished from reference strains by 16S rRNA gene sequencing and biochemical tests. The organism contained menaquinone MK-6 as the predominant respiratory quinone and had a DNA G + C content of 31 mol%. A most probable number-PCR approach was developed to detect, and estimate the numbers of, this organism. Untreated wastewater from one plant yielded an estimated count of 1.4 x 10(5) cells ml(-1), and untreated wastewater from a second plant yielded an estimated count of 1.4 x 10(4) cells ml(-1). Signal was not detected from treated effluent or from human stool specimens. On the basis of the results of the study presented, it is proposed that the unknown bacterium be classified in a novel genus Cloacibacterium, as Cloacibacterium normanense gen. nov., sp. nov., which is also the type species. The type strain of Cloacibacterium normanense is strain NRS1(T) (=CCUG 46293(T)=CIP 108613(T) =ATCC BAA-825(T) = DSM 15886(T)).
Resumo:
A recently emerging bleeding canker disease, caused by Pseudomonas syringae pathovar aesculi (Pae), is threatening European horse chestnut in northwest Europe. Very little is known about the origin and biology of this new disease. We used the nucleotide sequences of seven commonly used marker genes to investigate the phylogeny of three strains isolated recently from bleeding stem cankers on European horse chestnut in Britain (E-Pae). On the basis of these sequences alone, the E-Pae strains were identical to the Pae type-strain (I-Pae), isolated from leaf spots on Indian horse chestnut in India in 1969. The phylogenetic analyses also showed that Pae belongs to a distinct clade of P. syringae pathovars adapted to woody hosts. We generated genome-wide Illumina sequence data from the three E-Pae strains and one strain of I-Pae. Comparative genomic analyses revealed pathovar-specific genomic regions in Pae potentially implicated in virulence on a tree host, including genes for the catabolism of plant-derived aromatic compounds and enterobactin synthesis. Several gene clusters displayed intra-pathovar variation, including those encoding type IV secretion, a novel fatty acid biosynthesis pathway and a sucrose uptake pathway. Rates of single nucleotide polymorphisms in the four Pae genomes indicate that the three E-Pae strains diverged from each other much more recently than they diverged from I-Pae. The very low genetic diversity among the three geographically distinct E-Pae strains suggests that they originate from a single, recent introduction into Britain, thus highlighting the serious environmental risks posed by the spread of an exotic plant pathogenic bacterium to a new geographic location. The genomic regions in Pae that are absent from other P. syringae pathovars that infect herbaceous hosts may represent candidate genetic adaptations to infection of the woody parts of the tree.
Resumo:
Pseudomonas syringae pv. phaseolicola is the seed borne causative agent of halo blight in the common bean Phaseolus vulgaris. Pseudomonas syringae pv. phaseolicola race 4 strain 1302A contains the avirulence gene hopAR1 (located on a 106-kb genomic island, PPHGI-1, and earlier named avrPphB), which matches resistance gene R3 in P. vulgaris cultivar Tendergreen (TG) and causes a rapid hypersensitive reaction (HR). Here, we have fluorescently labeled selected Pseudomonas syringae pv. phaseolicola 1302A and 1448A strains (with and without PPHGI-1) to enable confocal imaging of in-planta colony formation within the apoplast of resistant (TG) and susceptible (Canadian Wonder [CW]) P. vulgaris leaves. Temporal quantification of fluorescent Pseudomonas syringae pv. phaseolicola colony development correlated with in-planta bacterial multiplication (measured as CFU/ml) and is, therefore, an effective means of monitoring Pseudomonas syringae pv. phaseolicola endophytic colonization and survival in P. vulgaris. We present advances in the application of confocal microscopy for in-planta visualization of Pseudomonas syringae pv. phaseolicola colony development in the leaf mesophyll to show how the HR defense response greatly affects colony morphology and bacterial survival. Unexpectedly, the presence of PPHGI-1 was found to cause a reduction of colony development in susceptible P. vulgaris CW leaf tissue. We discuss the evolutionary consequences that the acquisition and retention of PPHGI-1 brings to Pseudomonas syringae pv. phaseolicola in planta.
Resumo:
Six strains of a previously undescribed catalase-positive coryneform bacterium isolated from clinical specimens from dogs were characterized by phenotypic and molecular genetic methods. Biochemical and chemotaxonomic studies revealed that the unknown bacterium belonged to the genus Corynebacterium sensu stricto. Comparative 16S rRNA gene sequencing showed that the six strains were genealogically highly related and constitute a new subline within the genus Corynebacterium; this subline is close to but distinct from C. falsenii, C. jeikeium, and C. urealyticum. The unknown bacterium from dogs was distinguished from all currently validated Corynebacterium species by phenotypic tests including electrophoretic analysis of whole-cell proteins. On the basis of phylogenetic and phenotypic evidence, it is proposed that the unknown bacterium be classified as a new species, Corynebacterium auriscanis. The type strain of C. auriscanis is CCUG 39938T.
Resumo:
A hitherto undescribed Actinomyces-like bacterium was isolated from the vagina of a dog. Biochemical testing and PAGE analysis of whole-cell proteins indicated that the isolate was phenotypically different from previously described Actinomyces species and related taxa. Sequencing of 165 rRNA showed that the unknown bacterium was distinct from all currently known Actinomyces species. Phylogenetically, the unidentified organism displayed a specific association with Actinomyces europaeus, but a sequence divergence of > 5% demonstrated that it represents a distinct species. Based on both phenotypic and 165 rRNA sequence considerations, it is proposed that the unknown strain from a dog be classified as a novel species, Actinomyces coleocanis sp. nov. The type strain is CCUG 41708T (= CIP 106873T).
Resumo:
Five strains of an unusual catalase-negative Gram-positive asporogenous rod-shaped bacterium from human sources were subjected to a polyphasic taxonomic study. The presence of fructose-6-phosphate phosphoketolase, a key enzyme of bifidobacterial hexose metabolism, indicated the strains were members of the genus Bifidobacterium but they did not correspond to any of the recognized species of this genus on the basis of biochemical profiles and whole-cell protein analyses. Comparative 16S rRNA gene sequencing confirmed the placement of the isolates in the genus Bifidobacterium, and demonstrated they represent a hitherto unknown subline within the genus displaying > 5% sequence divergence with recognized species. Based on both phenotypic and phylogenetic criteria, it is proposed that the isolates recovered from human sources be classified as a new species, Bifidobacterium scardovii sp. nov.; the type strain is CCUG 13008T (= DSM 13734T).
Resumo:
A polyphasic taxonomic study was performed on a previously unidentified gram-positive, facultatively anaerobic, diphtheroid-shaped organism isolated from a vaginal discharge of a horse. Comparative 16S rRNA gene sequencing demonstrated that the strain was a member of the genus Arcanobacterium, but sequence divergence values of >4% with described species of this genus (viz: Arcanobacterium haemolyticum, Arcanobacterium bernardiae, Arcanobacterium phocae, Arcanobacterium pluranimalium and Arcanobacterium pyogenes) demonstrated that the isolate represented a novel species. The unknown bacterium was readily distinguished from other Arcanobacterium species by biochemical tests. Based on phylogenetic and phenotypic evidence, it is proposed that the unknown bacterium be classified as Arcanobacterium hippocoleae sp. nov. The type strain of A. hippocoleae is CCUG 44697T (= CIP 106850T).
Resumo:
An unknown gram-positive, catalase-positive, strictly aerobic, rod-shaped bacterium was isolated from the nasal cavities of two common seals. Chemical analysis revealed the presence in the bacterium of a hitherto unknown cell-wall murein [type: L-Lys-L-Ala2-Gly(2-3)-L-Ala (Gly)]. Comparative 16S rRNA gene sequencing showed that the unidentified rod was related to the Arthrobacter group of organisms, although sequence divergence values of >3% from established members of this genus indicated that it represents a novel species. On the basis of phenotypic and phylogenetic considerations, it is proposed that the unknown bacterium from seals (Phoca vitulina) be classified as a novel species, Arthrobacter nasiphocae sp. nov. The type strain of Arthrobacter nasiphocae is CCUG 42953T.
Resumo:
Three strains of a gram-negative, blood or serum requiring, rod-shaped bacterium recovered from human clinical specimens were characterised by phenotypic and molecular taxonomic methods. Comparative 16S rRNA gene sequencing showed the unknown rod-shaped strains are members of the same species as some fastidious isolates recovered from human blood specimens and previously designated "Leptotrichia sanguinegens". Based on phylogenetic and phenotypic evidence, it is proposed that the isolates from human sources be classified in a new genus Sneathia, as Sneathia sanguinegens gen. nov., sp. nov. The type strain of Sneathia sanguinegens is CCUG 41628T.