865 resultados para PROGENITOR
Resumo:
It is now widely accepted that adult neurogenesis plays a fundamental role in hippocampal function. Neurons born in the adult dentate gyrus of the hippocampus undergo a series of events before they fully integrate in the network and eventually become undistinguishable from neurons born during embryogenesis. Adult hippocampal neurogenesis is strongly regulated by neuronal activity and neurotransmitters, and the synaptic integration of adult-born neurons occurs in discrete steps, some of which are very different from perinatal synaptogenesis. Here, we review the current knowledge on the development of the synaptic input and output of neurons born in the adult hippocampus, from the stem/progenitor cell to the fully mature neuron. We also provide insight on the regulation of adult neurogenesis by some neurotransmitters and discuss some specificities of the integration of new neurons in an adult environment. The understanding of the mechanisms regulating the synaptic integration of adult-born neurons is not only crucial for our understanding of brain plasticity, but also provides a framework for the manipulation and monitoring of endogenous adult neurogenesis as well as grafted cells, for potential therapeutic applications.
Resumo:
SUMMARY : Ewing's sarcoma is a member of Ewing's family tumors (ESPY) and the second most common solid bone and soft tissue malignancy of children and young adults. It is associated in 85% of cases with the t(11;22)(q24:q12) chromosomal translocation that generates fusion of the 5' segment of the EWSR1 gene with the 3' segment of the ETS family gene FLI-1. The EWSR1-FLI-1 fusion protein behaves as an aberrant transcriptional activator and is believed to contribute to ESFT development. However, EWSR1-FLI-1 induces growth arrest and apoptosis in normal fibroblasts, and primary cells that are pemissive for its putative oncogenic properties have not been discovered, hampering basic understanding of ESFT biology. Here, we show that EWSR1-FLI-1 alone can transform mouse primary bone marrow-derived mesenchymal progenitor cells and generate tumors that display hallmarks of Ewing's sarcoma, including a small round cell phenotype, expression of ESFT-associated markers, insulin like growth factor-I dependence, and induction or repression of numerous EWSR1-FLI-1 target genes. Consistent with this finding, we tested the possibility that human mesenchymal stem cells (hMSC) might also provide a permissive cellular environment for EWSR1-FLI-1, and could represent the first adequate primary human cellular background for the oncogenic properties of the fusion protein. Indeed, expression of EWSR1-FLI-1 in human mesenchymal stem cells (hMSC) was not only stably maintained without inhibiting proliferation, but induced a gene expression profile bearing striking similarity to that of ESFT, including genes that are among the highest ESFT discriminators. Expression of EWSR1-FLI-1 in hMSCs may recapitulate the initial steps of Ewing's sarcoma development, allowing identification of genes that play an important role early in its pathogenesis. Among relevant candidate transcripts induced by EWSR1-FL/-1 in hMSC we found the polycomb group gene EZH2 which we show to play a critical role in Ewing's sarcoma growth. These observations provide the first identification of candidate primary cells from which ESFTs originate and suggest that EWSR1-FLI-1 expression may constitute the initiating event in ESFT pathogenesis. Le sarcome d' Ewing est un membre de la famille des tumeurs Ewing (ESFT) et représente la deuxième tumeur maligne solide de l'os et des tissus mous chez les enfants et les jeunes adultes. Cette tumeur est associée dans 85% des cas avec la translocation chromosomique t(11;22)(g24:g12), qui génère la fusion entre le segment 5' du gène EWSR1 avec le segment 3' du gène FLI-1, appartenant à la famille des facteurs de transcription ETS. La protéine de fusion EWSR1-FLI-1 qui en dérive joue le rSle d'un facteur de transcription aberrant, et est supposée contribuer de manière décisive au processus de développement des ESFTs. Néanmoins, l'expression de EWSR1-FLI-1 dans des fibroblastes normaux induit un arrêt de croissance et leur apoptose, et les cellules primaires permissives pour les propriétés oncogéniques attribuées à la translocation n'ont pas encore été identifiées, empêchant la compréhension de la biologie de base du sarcome d'Ewing. Dans ce travail on montre que l'expression de EWSR1-FLI-1 uniquement est capable de transformer des cellules souches mésenchymateuses dérivées de la moelle osseuse de la souris, pour générer des tumeurs qui présentent les caractéristiques du sarcome d' Ewing humain, et notamment une morphologie de petites cellules bleues et rondes, l'expression de marqueurs associés aux ESFTs, une dépendance du facteur de croissance IGF-1, et l'induction ou la répression de nombreux gènes cibles connus de EWSR1-FLI-1. Sur la base de ces observations, on a testé la possibilité que les cellules souches mésenchymateuses humaines (hMSCs) puissent aussi fournir un environnement cellulaire permissif pour EWSR1-FLI-1 ; et représenter le premier background cellulaire humain adéquat pour la manifestation du pouvoir oncogénique de la protéine de fusion. En effet, l'expression de EWSR1-FLI-1 dans des cellules souches mésenchymateuses humaines s'est révélée non seulement maintenue, mais elle a induit un profil d'expression génétique étonnamment similaire à celui des ESFTs humains, incluant les gènes qui ont été rapportés comme étant les plus discriminatifs pour ces tumeurs. L'expression de EWSR1-FLI-1 dans les hMSCs pourrait récapituler les étapes initiales du développement du sarcome d' Ewing, et de ce fait consentir à identifier les gènes qui jouent un rôle crucial dans sa pathogenèse précoce. Parmi les transcrits relevant indults par EWSR1-FL/-9 dans les hMSCs nous avons découvert le gène du groupe des polycomb EZH2, que nous avons par la suite démontré jouer un rôle essentiel dans la croissance du sarcome de Ewing. Ces observations apportent pour la première fois l'identification d'une cellule primaire candidate pour représenter la cellule d'origine des ESFTs, et en même temps suggèrent que l'expression de EWSR1-FLI-1 peut constituer l'événement initial dans la pathogenèse du sarcome d' Ewing.
Resumo:
The Rho family GTPases Cdc42 and Rac1 are critical regulators of the actin cytoskeleton and are essential for skin and hair function. Wiskott-Aldrich syndrome family proteins act downstream of these GTPases, controlling actin assembly and cytoskeletal reorganization, but their role in epithelial cells has not been characterized in vivo. Here, we used a conditional knockout approach to assess the role of neural Wiskott-Aldrich syndrome protein (N-WASP), the ubiquitously expressed Wiskott-Aldrich syndrome-like (WASL) protein, in mouse skin. We found that N-WASP deficiency in mouse skin led to severe alopecia, epidermal hyperproliferation, and ulceration, without obvious effects on epidermal differentiation and wound healing. Further analysis revealed that the observed alopecia was likely the result of a progressive and ultimately nearly complete block in hair follicle (HF) cycling by 5 months of age. N-WASP deficiency also led to abnormal proliferation of skin progenitor cells, resulting in their depletion over time. Furthermore, N-WASP deficiency in vitro and in vivo correlated with decreased GSK-3beta phosphorylation, decreased nuclear localization of beta-catenin in follicular keratinocytes, and decreased Wnt-dependent transcription. Our results indicate a critical role for N-WASP in skin function and HF cycling and identify a link between N-WASP and Wnt signaling. We therefore propose that N-WASP acts as a positive regulator of beta-catenin-dependent transcription, modulating differentiation of HF progenitor cells.
Resumo:
B19 infection offers some general lessons about human viruses and their possible effects on the human host, as follows: (1) Ubiquitous apparently benign viruses may have severe effects on a compromissed host. The virus may be invariable but the host can have diverse susceptibilities. (2) B19 and some other human viruses (through for none is the evidence so clear as for B19) have narrowly targetted effects. The host cell of B19 is a specialised progenitor of mature red cells: impairment of the function of this cell by B19 may cause profound anaemia. (3) The 'normal'host response to B19 may also cause disease, though this is slef limiting. (4) The effects of malfunction of the virus'target cell are exacerbated when the immune response is impaired by congenital or acquired immunodeficiency, immunosupressive therapy or, in the case of the fetus, developmental immaturity that allows the virus to persist.
Resumo:
APO866 inhibits nicotinamide phosphoribosyltransferase (NMPRTase), a key enzyme involved in nicotinamide adenine dinucleotide (NAD) biosynthesis from the natural precursor nicotinamide. Intracellular NAD is essential for cell survival, and NAD depletion resulting from APO866 treatment elicits tumor cell death. Here, we determine the in vitro and in vivo sensitivities of hematologic cancer cells to APO866 using a panel of cell lines (n = 45) and primary cells (n = 32). Most cancer cells (acute myeloid leukemia [AML], acute lymphoblastic leukemia [ALL], mantle cell lymphoma [MCL], chronic lymphocytic leukemia [CLL], and T-cell lymphoma), but not normal hematopoietic progenitor cells, were sensitive to low concentrations of APO866 as measured in cytotoxicity and clonogenic assays. Treatment with APO866 decreased intracellular NAD and adenosine triphosphate (ATP) at 24 hours and 48 to72 hours, respectively. The NAD depletion led to cell death. At 96 hours, APO866-mediated cell death occurred in a caspase-independent mode, and was associated with mitochondrial dysfunction and autophagy. Further, in vivo administration of APO866 as a single agent prevented and abrogated tumor growth in animal models of human AML, lymphoblastic lymphoma, and leukemia without significant toxicity to the animals. The results support the potential of APO866 for treating hematologic malignancies.
Resumo:
Chemotherapy-induced anemia in children with cancer is usually of acute onset. To investigate an alternate treatment to transfusion (Tx), we undertook a phase I-II clinical trial of daily administrations of recombinant erythropoietin (rHuEPO). Patients with a hemoglobin (Hgb) value < 75 g/l were treated for 14 days in cohorts of 3 at escalating daily doses of 25, 50, 70, 80, 90, and 100 U/kg respectively. The maximum-tolerated dose was not encountered. Of 18 courses given to 15 children aged 0.5-18 years, 7 (39%) were associated with increased or stable Hgb levels (courses without Tx), while 11 (61%) were terminated by a Tx, without evidence of a dose-response relationship. Changes in mean Hgb levels and absolute reticulocyte counts were paralleled by those of mean white blood cell, platelet, and absolute neutrophil counts during the first 7 days and when the end-points of the study were reached. Numbers of circulating burst-forming units-erythroid remained low throughout courses without Tx. No cumulative increase of serially determined serum EPO levels was observed and serum ferritin levels were elevated in both groups of courses. We conclude that daily administration of rHuEPO were safe but ineffective in our trial. Recovery of chemotherapy-induced myelosuppression appeared to be the rate-limiting factor for the outcome, without evidence of an enhanced stimulation of erythropoiesis. The lack of a proliferative response of specific progenitor cells suggested a mechanism of transient primary resistance to rHuEPO.
Resumo:
Multipotent mesenchymal stromal cells (MSCs) are a type of adult stem cells that can be easily isolated from various tissues and expanded in vitro. Many reports on their pluripotency and possible clinical applications have raised hopes and interest in MSCs. In an attempt to unify the terminology and the criteria to label a cell as MSC, in 2006 the International Society for Cellular Therapy (ISCT) proposed a standard set of rules to define the identity of these cells. However, MSCs are still extracted from different tissues, by diverse isolation protocols, are cultured and expanded in different media and conditions. All these variables may have profound effects on the selection of cell types and the composition of heterogeneous subpopulations, on the selective expansion of specific cell populations with totally different potentials and ergo, on the long-term fate of the cells upon in vitro culture. Therefore, specific molecular and cellular markers that identify MSCs subsets as well as standardization of expansion protocols for these cells are urgently needed. Here, we briefly discuss new useful markers and recent data supporting the rapidly emerging concept that many different types of progenitor cells are found in close association with blood vessels. This knowledge may promote the necessary technical improvements required to reduce variability and promote higher efficacy and safety when isolating and expanding these cells for therapeutic use. In the light of the discussed data, particularly the identification of new markers, and advances in the understanding of fundamental MSC biology, we also suggest a revision of the 2006 ISCT criteria.
Resumo:
Allergen-induced bone marrow responses are observable in human allergic asthmatics, involving specific increases in eosinophil-basophil progenitors (Eo/B-CFU), measured either by hemopoietic assays or by flow cytometric analyses of CD34-positive, IL-3Ralpha-positive, and/or IL-5-responsive cell populations. The results are consistent with the upregulation of an IL-5-sensitive population of progenitors in allergen-induced late phase asthmatic responses. Studies in vitro on the phenotype of developing eosinophils and basophils suggest that the early acquisition of IL-5Ralpha, as well as the capacity to produce cytokines such as GM-CSF and IL-5, are features of the differentiation process. These observations are consistent with findings in animal models, indicating that allergen-induced increases in bone marrow progenitor formation depend on hemopoietic factor(s) released post-allergen. The possibility that there is constitutive marrow upregulation of eosinophilopoiesis in allergic airways disease is also an area for future investigation.
Resumo:
Summary : Platelet Derived Growth Factor (PDGF) and Transforming Growth Factor-ß (TGF-ß) are two crucial growth factors in tissue repair and regeneration. They control migration and proliferation of macrophages and fibroblasts, as well as myofibroblast differentiation and synthesis of the new connective tissue. The transcription factor Nuclear Factor I-C (NFI-C) has been implicated in the TGF-ß pathway and regulation of extracellular matrix proteins in vitro. This suggests a possible implication of NFI-C in tissue repair. In this study, our purpose was to identify the NFI-C target genes in TGF-ß1 pathway activation and define the relationship between these two factors in cutaneous wound healing process. High-throughput genomic analysis in wild-type and NFI-C knock-out embryonic fibroblasts indicated that NFI-C acts as a repressor of the expression of genes which transcriptional activity is enhanced by TGF-ß. Interestingly, we found an over representation of genes involved in connective tissue inflammation and repair. In accordance with the genomic analysis, NFI-C-/- mice showed an improvement of skin healing during the inflammatory stage. Analysis of this new phenotype indicated that the expression of PDGFA and PDGF-Ra genes were increased in the wounds of NFI-C-/- mice resulting in early recruitment of macrophages and fibroblasts in the granulation tissue. In correlation with the stimulation effect of TGF-ß on myofibroblast differentiation we found an increased differentiation of these cells in null mice, providing a rationale for rapid wound closure. Thus, in the absence of NFI-C, both TGF-ß and PDGF pathways may be activated, leading to enhanced healing process. Therefore, the inhibition of NFI-C expression could constitute a suitable therapy for healing improvement. In addition, we identified a delay of hair follicle cycle initiation in NFI-C-/- mice. This prompted us to investigate the role of NFI-C in skin appendage. The transition from a quiescent to a proliferative phase requires a perfect timing of signalling modulation, leading to stem cell activation. As a consequence of cycle initiation delay in null mice, the activation of signalling involved in cell proliferation was also retarded. Interestingly, at the crucial moment of cell fate determination, we identified a decrease of CD34 gene in mutant mice. Since CD34 protein is involved in migration of multipotent cells, we suggest that NFI-C may be involved in stem cell mobilisation required for hair follicle renewal. Further investigations of the role of NFI-C in progenitor cell activation will lead to a better understanding of tissue regeneration and raise the possibility of treating alopecia with NFI-C-targeting treatment. In summary, this study demonstrates new regenerative functions of NFI-C in adult mice, which regulates skin repair and hair follicle renewal. Résumé : PDGF et TGF-ß sont des facteurs important du mécanisme de défense immunitaire. Ils influencent la prolifération et migration des macrophages et des fibroblastes, ainsi que la différenciation des myofibroblastes et la formation du nouveau tissu conjonctif. Le facteur de transcription NFI-C a été impliqué dans la voie de signalisation de TGF-ß et dans 1a régulation de l'expression des protéines de la matrice extracellulaire in vitro. Ces études antérieures laissent supposer que NFI-C serait un facteur important du remodelage tissulaire. Cependant le rôle de NFI-C dans un tissu comme la peau n'a pas encore été étudié. Dans ce travail, le but a été de d'identifier la relation qu'il existe entre I~1FI-C et TGF-ßl à un niveau transcriptionnel et dans le processus de cicatrisation cutanée in vivo. Ainsi, une analyse génétique à grande échelle, a permis d'indiquer que NFI-C agit comme un répresseur sur l'expression des gènes dont l'activité transcriptionnelle est activée par TGF-ß. De plus nous avons identifié un groupe de gènes qui controlent le développement et l'inflammation du tissue conjonctif. En relation avec ce résultat, l'absence de NFI-C dans la peau induit une cicatrisation plus rapide pendant la phase inflammatoire. Durant cette période, nous avons montré que les expressions de PDGFA et PDGFRa seraient plus élevées en absence de NFI-C. En conséquence, l'activation de la voie de PDGF induit une infiltration plus importante des macrophages et fibroblastes dans le tissue granuleux des souris mutantes. De plus, en corrélation avec le rôle de TGF-ßl dans la différenciation des myofibroblasts, nous avons observé une différenciation plus importante de ces cellules chez les animaux knock-out, ce qui peut expliquer une contraction plus rapide de la plaie. De plus, nous avons découvert que NFI-C est impliqué dans l'initiation du cycle folliculaire. La caractérisation de ce nouveau phénotype a montré un ralentissement de la transition telogène-anagène des souris NFI-C-/-. Or, un événement clé de cette transition est la modulation de plusieurs signaux moléculaires aboutissant à' l'activation des cellules souches. En corrélation avec le decalage du cycle, l'activation de ces signaux est également décalée dans les souris NFI-C-/-. Ainsi, au commencement de l'anagène, la prolifération des keratinocytes,NFI-C-/- est retardée et corrèle avec une diminution de l'expression de CD34, une protéine responsable de la détermination du migration des cellules multipotentes. Ainsi, NFI-C semble être impliqué dans la mobilisation des cellules souches qui sont nécessaires au renouvellement folliculaire. En résumé, NFI-C est impliqué dans la régulation des signaux moléculaires nécessaires à la réparation tissulaire et son inhibition pourrait constituer un traitement de la cicatrisation. L'analyse de son rôle dans l'activation des cellules souches permettrait de mieux comprendre le renouvellement tissulaire et, à long terme, d'améliorer les techniques de greffe des cellules souches épithéliales ou consituter une cible pour le traitement de l'alopecie.
Resumo:
MOTIVATION: Combinatorial interactions of transcription factors with cis-regulatory elements control the dynamic progression through successive cellular states and thus underpin all metazoan development. The construction of network models of cis-regulatory elements, therefore, has the potential to generate fundamental insights into cellular fate and differentiation. Haematopoiesis has long served as a model system to study mammalian differentiation, yet modelling based on experimentally informed cis-regulatory interactions has so far been restricted to pairs of interacting factors. Here, we have generated a Boolean network model based on detailed cis-regulatory functional data connecting 11 haematopoietic stem/progenitor cell (HSPC) regulator genes. RESULTS: Despite its apparent simplicity, the model exhibits surprisingly complex behaviour that we charted using strongly connected components and shortest-path analysis in its Boolean state space. This analysis of our model predicts that HSPCs display heterogeneous expression patterns and possess many intermediate states that can act as 'stepping stones' for the HSPC to achieve a final differentiated state. Importantly, an external perturbation or 'trigger' is required to exit the stem cell state, with distinct triggers characterizing maturation into the various different lineages. By focusing on intermediate states occurring during erythrocyte differentiation, from our model we predicted a novel negative regulation of Fli1 by Gata1, which we confirmed experimentally thus validating our model. In conclusion, we demonstrate that an advanced mammalian regulatory network model based on experimentally validated cis-regulatory interactions has allowed us to make novel, experimentally testable hypotheses about transcriptional mechanisms that control differentiation of mammalian stem cells. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.
Resumo:
Neuronal migration disorders such as lissencephaly and subcortical band heterotopia are associated with epilepsy and intellectual disability. DCX, PAFAH1B1 and TUBA1A are mutated in these disorders; however, corresponding mouse mutants do not show heterotopic neurons in the neocortex. In contrast, spontaneously arisen HeCo mice display this phenotype, and our study revealed that misplaced apical progenitors contribute to heterotopia formation. While HeCo neurons migrated at the same speed as wild type, abnormally distributed dividing progenitors were found throughout the cortical wall from embryonic day 13. We identified Eml1, encoding a microtubule-associated protein, as the gene mutated in HeCo mice. Full-length transcripts were lacking as a result of a retrotransposon insertion in an intron. Eml1 knockdown mimicked the HeCo progenitor phenotype and reexpression rescued it. We further found EML1 to be mutated in ribbon-like heterotopia in humans. Our data link abnormal spindle orientations, ectopic progenitors and severe heterotopia in mouse and human.
Functional late outgrowth endothelial progenitors isolated from peripheral blood of burned patients.
Resumo:
BACKGROUND: Bioengineered skin substitutes are increasingly considered as a useful option for the treatment of full thickness burn injury. Their viability following grafting can be enhanced by seeding the skin substitute with late outgrowth endothelial progenitor cells (EPCs). However, it is not known whether autologous EPCs can be obtained from burned patients shortly after injury. METHODS: Late outgrowth EPCs were isolated from peripheral blood sampled obtained from 10 burned patients (extent 19.6±10.3% TBSA) within the first 24h of hospital admission, and from 7 healthy subjects. Late outgrowth EPCs were phenotyped in vitro. RESULTS: In comparison with similar cells obtained from healthy subjects, growing colonies from burned patients yielded a higher percentage of EPC clones (46 versus 17%, p=0.013). Furthermore, EPCs from burned patients secreted more vascular endothelial growth factor (VEGF) into the culture medium than did their counterparts from healthy subjects (85.8±56.2 versus 17.6±14pg/mg protein, p=0.018). When injected to athymic nude mice 6h after unilateral ligation of the femoral artery, EPCs from both groups of subjects greatly accelerated the reperfusion of the ischaemic hindlimb and increased the number of vascular smooth muscle cells. CONCLUSIONS: The present study supports that, in patients with burns of moderate extension, it is feasible to obtain functional autologous late outgrowth EPCs from peripheral blood. These results constitute a strong incentive to pursue approaches based on using autotransplantation of these cells to improve the therapy of full thickness burns.
Resumo:
Purpose: In the Rd1 and Rd10 mouse models of retinitis pigmentosa, a mutation in the Pde6ß gene leads to the rapid loss of photoreceptors. As in several neurodegenerative diseases, Rd1 and Rd10 photoreceptors re-express cell cycle proteins prior to death. Bmi1 regulates cell cycle progression through inhibition of CDK inhibitors, and its deletion efficiently rescues the Rd1 retinal degeneration. The present study evaluates the effects of Bmi1 loss in photoreceptors and Müller glia, since in lower vertebrates, these cells respond to retinal injury through dedifferentiation and regeneration of retinal cells. Methods: Cell death and Müller cell activation were analyzed by immunostaining of wild-type, Rd1 and Rd1;Bmi1-/- eye sections during retinal degeneration, between P10 and P20. Lineage tracing experiments use the GFAP-Cre mouse (JAX) to target Müller cells. Results: In Rd1 retinal explants, inhibition of CDKs reduces the amount of dying cells. In vivo, Bmi1 deletion reduces CDK4 expression and cell death in the P15 Rd1;Bmi1-/- retina, although cGMP accumulation and TUNEL staining are detected at the onset of retinal degeneration (P12). This suggests that another process acts in parallel to overcome the initial loss of Rd1;Bmi1-/- photoreceptors. We demonstrate here that Bmi1 loss in the Rd1 retina enhances the activation of Müller glia by downregulation of p27Kip1, that these cells migrate toward the ONL, and that some cells express the retinal progenitor marker Pax6 at the inner part of the ONL. These events are also observed, but to a lesser extent, in Rd1 and Rd10 retinas. At P12, EdU incorporation shows proliferating cells with atypical elongated nuclei at the inner border of the Rd1;Bmi1-/- ONL. Lineage tracing targeting Müller cells is in process and will determine the implication of this cell population in the maintenance of the Rd1;Bmi1-/- ONL thickness and whether downregulation of Bmi1 in Rd10 Müller cells equally stimulates their activation. Conclusions: Our results show a dual role of Bmi1 deletion in the rescue of photoreceptors in the Rd1;Bmi1-/- retina. Indeed, the loss of Bmi1 reduces Rd1 retinal degeneration, and as well, enhances the Müller glia activation. In addition, the emergence of cells expressing a retinal progenitor marker in the ONL suggests Bmi1 as a blockade to the regeneration of retinal cells in mammals.
Resumo:
Remyelination can be studied in aggregating rat brain cell cultures after limited demyelination. Demyelination was induced using a monoclonal antibody against myelin/oligodendrocyte glycoprotein (MOG mAb), in the presence of complement. De- and remyelination were assessed by measuring myelin basic protein (MBP). Two days after removing the MOG mAb, MBP levels reached 50% of controls and after 7 days 93%. During this period, cell proliferation determined by [14C]thymidine incorporation was similar in remyelinating and control cultures. Hormones and growth factors were tested for possible stimulatory effect on remyelinating cultures. Bovine growth hormone (bGH), triiodothyronine (T3), basic fibroblast growth factor (bFGF) and platelet-derived growth factor (PDGF) did not improve remyelination. Only epidermal growth factor (EGF) increased the level of remyelination. PDGF increased the rate of cell proliferation in both control and remyelinating cultures. A significant proportion of oligodendrocytes entered the cell division cycle and were not available for remyelination. The results obtained with PDGF and FGF (inhibition) support the idea that a pool of progenitor cells was still present and able to proliferate and differentiate into myelinating oligodendrocytes. The levels of myelin protein mRNAs were investigated during de- and remyelination. During demyelination, myelin protein mRNA levels decreased to approximately 50% of control cultures and returned to normal during remyelination. These preliminary results indicate that normal levels of gene transcription are sufficient to meet the increased need for newly synthesized myelin proteins during remyelination.
Resumo:
Cellular metabolism is emerging as a potential fate determinant in cancer and stem cell biology, constituting a crucial regulator of the hematopoietic stem cell (HSC) pool [1-4]. The extremely low oxygen tension in the HSC microenvironment of the adult bone marrow forces HSCs into a low metabolic profile that is thought to enable their maintenance by protecting them from reactive oxygen species (ROS). Although HSC quiescence has for long been associated with low mitochondrial activity, as testified by the low rhodamine stain that marks primitive HSCs, we hypothesized that mitochondrial activation could be an HSC fate determinant in its own right. We thus set to investigate the implications of pharmacologically modulating mitochondrial activity during bone marrow transplantation, and have found that forcing mitochondrial activation in the post-transplant period dramatically increases survival. Specifically, we examined the mitochondrial content and activation profile of each murine hematopoietic stem and progenitor compartment. Long-term-HSCs (LT-HSC, Lin-cKit+Sca1+ (LKS) CD150+CD34-), short-term-HSCs (ST-HSC, LKS+150+34+), multipotent progenitors (MPPs, LKS+150-) and committed progenitors (PROG, Lin-cKit+Sca1-) display distinct mitochondrial profiles, with both mitochondrial content and activity increasing with differentiation. Indeed, we found that overall function of the hematopoietic progenitor and stem cell compartment can be resolved by mitochondrial activity alone, as illustrated by the fact that low mitochondrial activity LKS cells (TMRM low) can provide efficient long-term engraftment, while high mitochondrial activity LKS cells (TMRM high) cannot engraft in lethally irradiated mice. Moreover, low mitochondrial activity can equally predict efficiency of engraftment within the LT-HSC and ST-HSC compartments, opening the field to a novel method of discriminating a population of transitioning ST-HSCs that retain long-term engraftment capacity. Based on previous experience that a high-fat bone marrow microenvironment depletes short-term hematopoietic progenitors while conserving their long-term counterparts [5], we set to measure HSC mitochondrial activation in high-fat diet fed mice, known to decrease metabolic rate on a per cell basis through excess insulin/IGF-1 production. Congruently, we found lower mitochondrial activation as assessed by flow cytometry and RT-PCR analysis as well as a depletion of the short-term progenitor compartment in high fat versus control chow diet fed mice. We then tested the effects of a mitochondrial activator known to counteract the negative effects of high fat diet. We first analyzed the in vitro effect on HSC cell cycle kinetics, where no significant change in proliferation or division time was found. However, HSCs responded to the mitochondrial activator by increasing asynchrony, a behavior that is thought to directly correlate with asymmetric division [6]. As opposed to high-fat diet fed mice, mice fed with the mitochondrial activator showed an increase in ST-HSCs, while all the other hematopoietic compartments were comparable to mice fed on control diet. Given the dependency on short-term progenitors to rapidly reconstitute hematopoiesis following bone marrow transplantation, we tested the effect of pharmacological mitochondrial activation on the recovery of mice transplanted with a limiting HSC dose. Survival 3 weeks post-transplant was 80% in the treated group compared to 0% in the control group, as predicted by faster recovery of platelet and neutrophil counts. In conclusion, we have found that mitochondrial activation regulates the long-term to short-term HSC transition, unraveling mitochondrial modulation as a valuable drug target for post-transplant therapy. Identification of molecular pathways accountable for the metabolically mediated fate switch is currently ongoing.