875 resultados para PLANTATION COSTS
Resumo:
Different reproductive strategies of males and females may lead to the evolution of differences in their energetic costs of reproduction, overall energetic requirements and physiological performances. Sexual dimorphism is often associated with costly behaviours (e.g. large males might have a competitive advantage in fighting, which is energetically expensive). However, few studies of mammals have directly compared the energy costs of reproductive activities between sexes. We compared the daily energy expenditure (DEE) and resting metabolic rate (RMR) of males and females of two species of mole-rat, Bathyergus janetta and Georychus capensis (the former is sexually dimorphic in body size and the latter is not) during a period of intense digging when males seek females. We hypothesized that large body size might be indicative of greater digging or fighting capabilities, and hence greater mass-independent DEE values in males of the sexually dimorphic species. In contrast to this prediction, although absolute values of DEE were greater in B. janetta males, mass-independent values were not. No differences were apparent between sexes in G. capensis. By comparison, although RMR values were greater in B. janetta than G. capensis, no differences were apparent between the sexes for either species. The energy cost of dimorphism is most likely to be the cost of maintenance of a large body size, and not the cost of behaviours performed when an individual is large.
Resumo:
Parasites have been suggested to influence many aspects of host behaviour. Some of these effects may be mediated via their impact on host energy budgets. This impact may include effects on both energy intake and absorption as well as components of expenditure, including resting metabolic rate (RMR) and activity (e.g. grooming). Despite their potential importance, the energy costs of parasitism have seldom been directly quantified in a field setting. Here we pharmacologically treated female Cape ground squirrels (Xerus inauris) with anti-parasite drugs and measured the change in body composition, the daily energy expenditure (DEE) using doubly labelled water, the RMR by respirometry and the proportions of time spent looking for food, feeding, moving and grooming. Post-treatment animals gained an average 19 g of fat or approximately 25 kJ d(-1). DEE averaged 382 kJ d-1 prior to and 375 kJ d-1 post treatment (p> 0.05). RMR averaged 174 kJ d-1 prior to and 217 kJ d-1 post treatment (p
Resumo:
The common spiny mouse Acomys cahirinus, of Ethiopian origin, has a widespread distribution across arid, semi-arid and Mediterranean parts of the Arabian sub-region. We compared the daily energy expenditure (DEE), water turnover NTTO) and sustained metabolic scope (SusMS = DEE/resting metabolic rate) of two adjacent populations during the winter. Mice were captured from North- and South- facing slopes (NFS and SFS) of the same valley, comprising mesic and xeric habitats, respectively. Both DEE and SusMS winter values were greater in NFS than SFS mice and were significantly greater than values previously measured in the summer for these two populations in the same environments. However, WTO values were consistent with previously established values and were not significantly different from allometric predictions for desert eutherians. We suggest that physiological plasticity in energy expenditure, which exists both temporally and spatially, combined with stable WTO, perhaps reflecting a xeric ancestry, has enabled A. cahirinus to invade a wide range of habitats. (C) 2003 Elsevier Inc. All rights reserved.
Resumo:
The paper focuses on the development of an aircraft design optimization methodology that models uncertainty and sensitivity analysis in the tradeoff between manufacturing cost, structural requirements, andaircraft direct operating cost.Specifically,ratherthanonlylooking atmanufacturingcost, direct operatingcost is also consideredintermsof the impact of weight on fuel burn, in addition to the acquisition cost to be borne by the operator. Ultimately, there is a tradeoff between driving design according to minimal weight and driving it according to reduced manufacturing cost. Theanalysis of cost is facilitated withagenetic-causal cost-modeling methodology,andthe structural analysis is driven by numerical expressions of appropriate failure modes that use ESDU International reference data. However, a key contribution of the paper is to investigate the modeling of uncertainty and to perform a sensitivity analysis to investigate the robustness of the optimization methodology. Stochastic distributions are used to characterize manufacturing cost distributions, andMonteCarlo analysis is performed in modeling the impact of uncertainty on the cost modeling. The results are then used in a sensitivity analysis that incorporates the optimization methodology. In addition to investigating manufacturing cost variance, the sensitivity of the optimization to fuel burn cost and structural loading are also investigated. It is found that the consideration of manufacturing cost does make an impact and results in a different optimal design configuration from that delivered by the minimal-weight method. However, it was shown that at lower applied loads there is a threshold fuel burn cost at which the optimization process needs to reduce weight, and this threshold decreases with increasing load. The new optimal solution results in lower direct operating cost with a predicted savings of 640=m2 of fuselage skin over the life, relating to a rough order-of-magnitude direct operating cost savings of $500,000 for the fuselage alone of a small regional jet. Moreover, it was found through the uncertainty analysis that the principle was not sensitive to cost variance, although the margins do change.
Resumo:
Survival, growth, above ground biomass accumulation, soil surface elevation dynamics and nitrogen accumulation in accreted sediments were studied in experimental treatments planted with four different densities (6.96, 3.26, 1.93 and 0.95 seedlings m-2) of the mangrove Rhizophora mucronata in Puttalam Lagoon, Sri Lanka. Measurements were taken over a period of 1171 days and were compared with those from unplanted controls. Trees at the lowest density showed significantly reduced survival, whilst measures of individual tree growth did not differ significantly among treatments. Rates of surface sediment accretion (means ± S.E.) were 13.0 (±1.3), 10.5 (±0.9), 8.4 (±0.3), 6.9 (±0.5) and 5.7 (±0.3) mm yr-1 at planting densities of 6.96, 3.26, 1.93, 0.95, and 0 (unplanted control) seedlings m-2, respectively, showing highly significant differences among treatments. Mean (± S.E.) rates of surface elevation change were much lower than rates of accretion at 2.8 (±0.2), 1.6 (±0.1), 1.1 (±0.2), 0.6 (±0.2) and -0.3 (±0.1) mm yr-1 for 6.96, 3.26, 1.93, 0.95, and 0 seedlings m-2, respectively. All planted treatments appeared to accumulate greater nitrogen concentrations in the sediment compared to the unplanted control, and suggests one potential causal mechanism for the facilitatory effects observed; high densities of plants potentially contribute to the accretion of greater amounts of nutrient rich sediment. While this potential process needs further study, this study demonstrated how higher densities of mangroves enhance rates of sediment accretion and surface elevation, processes that may be crucial in mangrove ecosystem adaptation to sea level rise. There was no evidence that increasing plant density evoked a trade-off with growth and survival of the planted trees. Rather facilitatory effects enhanced survival at high densities, suggesting that local land managers may be able to take advantage of plantation densities to help mitigate sea-level rise effects by encouraging positive soil surface elevation increment, and perhaps even greater nutrient retention to promote mangrove growth and ameliorate nearshore eutrophication in tropical island environments.
Resumo:
This article examines operational Private Finance Initiative (PFI) school projects and reports the experiences of UK headteachers. It considers the impact of project size on value for money (VFM). Headteachers involved in small projects are more satisfied with costs than those involved in large projects, but headteachers involved in larger projects are more satisfied with affordability. Generally, heads are more satisfied with the buildings than with the services. The authors question the government’s recent policy changes to increase the size of PFI projects.
Resumo:
Until now, there has been little empirical evidence that EU Emissions Trading Scheme (ETS) transaction costs are incurred at firm level. The transaction costs (internal costs, capital costs, consultancy and trading costs) incurred by Irish firms under the EU ETS during its pilot phase (2005-2007) were measured and analysed. Evidence for the sources of transaction costs, their magnitude and the distribution of costs shows that these were mainly administrative in nature. Considerable variation in costs was found due to economies of scale, as the costs per tonne of CO2 were lower for participants with larger allocations. For the largest firms - accounting for over half the emissions - average transaction costs were €0.05 per tonne. However, for small firms, average transaction costs were €2.02 - over 18% of the current allowance price. This supports the concerns that transaction costs are excessive for smaller participants. The immediate policy implication is that additional attention will be needed to address different sizes of firms, number of installations per firm, and the size of the initial allocations.