946 resultados para PBS, phosphate buffered saline
Resumo:
Haemolymph, heads, salivary glands, crops, midguts, hindguts, and Malpighian tubules from Rhodnius prolixus and Triatoma infestans were extracted in phosphate or Tris buffer saline with calcium, and tested for agglutination and lytic activities by microtitration against both vertebrateerythrocytes and cultured epimatigote forms of Trypanosoma rangeli. Haemagglutination activity against rabbit erythrocytes was found in the crop, midgut and hindgut extracts of T. infestans but only in the haemolymph of R. prolixus. Higher titres of parasite agglutinins were found in R. prolixus haemolymph than T. infestans, whilst the converse occurred for the tissue extracts. In addition, the extracts of T. infestans salivary glands, but not those of R. prolixus, showed a trypanolytic activity that was heat-inactivated and was not abolished by pre-incubation with any of the sugars or glycoproteins tested. T. infestans, which is refractory to infection by T. rangeli, thus appears to contain a much wider distribution of agglutinating and trypanolytic factors in its tissues than the more susceptible species, R. prolixus
Resumo:
AIMS: A hallmark of Fabry disease is the concomitant development of left-ventricular hypertrophy and arterial intima-media thickening, the pathogenesis of which is thought to be related to the presence of a plasmatic circulating growth-promoting factor. We therefore characterized the plasma of patients with Fabry disease in order to identify this factor. METHODS AND RESULTS: Using a classical biochemical strategy, we isolated and identified sphingosine-1 phosphate (S1P) as a proliferative factor present in the plasma of patients with Fabry disease. Plasma S1P levels were significantly higher in 17 patients with Fabry disease compared with 17 healthy controls (225 +/- 40 vs. 164 +/- 17 ng/mL; P = 0.005). There was a positive correlation between plasma S1P levels and both common carotid artery intima-media thickness and left-ventricular mass index (r(2) = 0.47; P = 0.006 and r(2) = 0.53; P = 0.0007, respectively). In an experimental model, mice treated with S1P developed cardiovascular remodelling similar to that observed in patients with Fabry disease. CONCLUSION: Sphingosine-1 phosphate participates in cardiovascular remodelling in Fabry disease. Our findings have implications for the treatment of cardiovascular involvement in Fabry disease.
Resumo:
Improvement of nerve regeneration and functional recovery following nerve injury is a challenging problem in clinical research. We have already shown that following rat sciatic nerve transection, the local administration of triiodothyronine (T3) significantly increased the number and the myelination of regenerated axons. Functional recovery is a sum of the number of regenerated axons and reinnervation of denervated peripheral targets. In the present study, we investigated whether the increased number of regenerated axons by T3-treatment is linked to improved reinnervation of hind limb muscles. After transection of rat sciatic nerves, silicone or biodegradable nerve guides were implanted and filled with either T3 or phosphate buffer solution (PBS). Neuromuscular junctions (NMJs) were analyzed on gastrocnemius and plantar muscle sections stained with rhodamine alpha-bungarotoxin and neurofilament antibody. Four weeks after surgery, most end-plates (EPs) of operated limbs were still denervated and no effect of T3 on muscle reinnervation was detected at this stage of nerve repair. In contrast, after 14 weeks of nerve regeneration, T3 clearly enhanced the reinnervation of gastrocnemius and plantar EPs, demonstrated by significantly higher recovery of size and shape complexity of reinnervated EPs and also by increased acetylcholine receptor (AChRs) density on post synaptic membranes compared to PBS-treated EPs. The stimulating effect of T3 on EP reinnervation is confirmed by a higher index of compound muscle action potentials recorded in gastrocnemius muscles. In conclusion, our results provide for the first time strong evidence that T3 enhances the restoration of NMJ structure and improves synaptic transmission.
Resumo:
Discs of polyvinyl alcohol cross-linked with glutaraldehyde were synthesized under acid catalysis (H2SO4). Then, the antigen F1 purified from Yersinia pestis was covalently linked to this modified polymer. Afterwards, an enzyme-linked immunosorbent assay (ELISA) was established for the diagnosis of plague in rabbit and human. The best conditions for the method were achieved by using 1.3 ¼g of F1 prepared in 0.067 M phosphate buffer, pH 7.2, containing 1 M NaCl (PBS); anti-IgG peroxidase conjugate diluted 6,000 times and as a blocking agent 3% w/v skim milk in PBS. The titration of positive rabbit serum according to this procedure detected antibody concentrations up to 1:12,800 times. The present method, the conventional ELISA and passive haemagglutination assay are compared.
Resumo:
BACKGROUND: Protein-energy wasting is a frequent and debilitating condition in maintenance dialysis. We randomly tested if an energy-dense, phosphate-restricted, renal-specific oral supplement could maintain adequate nutritional intake and prevent malnutrition in maintenance haemodialysis patients with insufficient intake. METHODS: Eighty-six patients were assigned to a standard care (CTRL) group or were prescribed two 125-ml packs of Renilon 7.5(R) daily for 3 months (SUPP). Dietary intake, serum (S) albumin, prealbumin, protein nitrogen appearance (nPNA), C-reactive protein, subjective global assessment (SGA) and quality of life (QOL) were recorded at baseline and after 3 months. RESULTS: While intention to treat analysis (ITT) did not reveal strong statistically significant changes in dietary intake between groups, per protocol (PP) analysis showed that the SUPP group increased protein (P < 0.01) and energy (P < 0.01) intakes. In contrast, protein and energy intakes further deteriorated in the CTRL group (PP). Although there was no difference in serum albumin and prealbumin changes between groups, in the total population serum albumin and prealbumin changes were positively associated with the increment in protein intake (r = 0.29, P = 0.01 and r = 0.27, P = 0.02, respectively). The SUPP group did not increase phosphate intake, phosphataemia remained unaffected, and the use of phosphate binders remained stable or decreased. The SUPP group exhibited improved SGA and QOL (P < 0.05). CONCLUSION: This study shows that providing maintenance haemodialysis patients with insufficient intake with a renal-specific oral supplement may prevent deterioration in nutritional indices and QOL without increasing the need for phosphate binders.
Resumo:
Protease activities in the haemolymph and fat body in a bloodsucking insect, Rhodnius prolixus, infected with Trypanosoma rangeli, were investigated. After SDS-polyacrylamide gel electrophoresis containing gelatin as substrate, analysis of zymograms performed on samples of different tissues of controls and insects inoculated or orally infected with short or long epimastigotes of T. rangeli, demonstrated distinct patterns of protease activities: (i) proteases were detected in the haemolymph of insects which were fed on, or inoculated with, short epimastigotes of T. rangeli (39 kDa and 33 kDa, respectively), but they were not observed in the fat body taken from these insects; (ii) protease was also presented in the fat bodies derived from naive insects or controls inoculated with sterile phosphate-saline buffer (49 kDa), but it was not detected in the haemolymph of these insects; (iii) no protease activity was observed in both haemolymph and fat bodies taken from insects inoculated with, or fed on, long epimastigotes of T. rangeli. Furthermore, in short epimastigotes of T. rangeli extracts, three bands of the protease activities with apparent molecular weights of 297, 198 and 95 kDa were detected while long epimastigotes preparation presented only two bands of protease activities with molecular weights of 297 and 198 kDa. The proteases from the insect infected with T. rangeli and controls belong to the class of either metalloproteases or metal-activated enzymes since they are inhibited by 1,10-phenanthroline. The significance of these proteases in the insects infected with short epimastigotes of T. rangeli is discussed in relation to the success of the establishment of infection of these parasites in its vector, R. prolixus.
Resumo:
Inorganic phosphate (Pi) homeostasis in multi-cellular eukaryotes depends not only on Pi influx into cells, but also on Pi efflux. Examples in plants for which Pi efflux is crucial are transfer of Pi into the xylem of roots and release of Pi at the peri-arbuscular interface of mycorrhizal roots. Despite its importance, no protein has been identified that specifically mediates phosphate efflux either in animals or plants. The Arabidopsis thaliana PHO1 gene is expressed in roots, and was previously shown to be involved in long-distance transfer of Pi from the root to the shoot. Here we show that PHO1 over-expression in the shoot of A. thaliana led to a two- to threefold increase in shoot Pi content and a severe reduction in shoot growth. (31) P-NMR in vivo showed a normal initial distribution of intracellular Pi between the cytoplasm and the vacuole in leaves over-expressing PHO1, followed by a large efflux of Pi into the infiltration medium, leading to a rapid reduction of the vacuolar Pi pool. Furthermore, the Pi concentration in leaf xylem exudates from intact plants was more than 100-fold higher in PHO1 over-expressing plants compared to wild-type. Together, these results show that PHO1 over-expression in leaves leads to a dramatic efflux of Pi out of cells and into the xylem vessel, revealing a crucial role for PHO1 in Pi efflux.
Resumo:
Central to the mutualistic arbuscular mycorrhizal symbiosis is the arbuscule, the site where symbiotic phosphate is delivered. Initial investigations in legumes have led to the exciting observation that symbiotic phosphate uptake not only enhances plant growth but also regulates arbuscule dynamics and is, furthermore, required for maintenance of the symbiosis. This review evaluates the possible role of the phosphate ion, not only as a nutrient but also as a signal that is necessary for reprogramming the host cortex cell for symbiosis.
Resumo:
BACKGROUND: The impact of osmotic therapies on brain oxygen has not been extensively studied in humans. We examined the effects on brain tissue oxygen tension (PbtO(2)) of mannitol and hypertonic saline (HTS) in patients with severe traumatic brain injury (TBI) and refractory intracranial hypertension. METHODS: 12 consecutive patients with severe TBI who underwent intracranial pressure (ICP) and PbtO(2) monitoring were studied. Patients were treated with mannitol (25%, 0.75 g/kg) for episodes of elevated ICP (>20 mm Hg) or HTS (7.5%, 250 ml) if ICP was not controlled with mannitol. PbtO(2), ICP, mean arterial pressure, cerebral perfusion pressure (CPP), central venous pressure and cardiac output were monitored continuously. RESULTS: 42 episodes of intracranial hypertension, treated with mannitol (n = 28 boluses) or HTS (n = 14 boluses), were analysed. HTS treatment was associated with an increase in PbtO(2) (from baseline 28.3 (13.8) mm Hg to 34.9 (18.2) mm Hg at 30 min, 37.0 (17.6) mm Hg at 60 min and 41.4 (17.7) mm Hg at 120 min; all p<0.01) while mannitol did not affect PbtO(2) (baseline 30.4 (11.4) vs 28.7 (13.5) vs 28.4 (10.6) vs 27.5 (9.9) mm Hg; all p>0.1). Compared with mannitol, HTS was associated with lower ICP and higher CPP and cardiac output. CONCLUSIONS: In patients with severe TBI and elevated ICP refractory to previous mannitol treatment, 7.5% hypertonic saline administered as second tier therapy is associated with a significant increase in brain oxygenation, and improved cerebral and systemic haemodynamics.
Resumo:
Pi acquisition of crops via arbuscular mycorrhizal (AM) symbiosis is becoming increasingly important due to limited high-grade rock Pi reserves and a demand for environmentally sustainable agriculture. Here, we show that 70% of the overall Pi acquired by rice (Oryza sativa) is delivered via the symbiotic route. To better understand this pathway, we combined genetic, molecular, and physiological approaches to determine the specific functions of two symbiosis-specific members of the PHOSPHATE TRANSPORTER1 (PHT1) gene family from rice, ORYsa;PHT1;11 (PT11) and ORYsa;PHT1;13 (PT13). The PT11 lineage of proteins from mono- and dicotyledons is most closely related to homologs from the ancient moss, indicating an early evolutionary origin. By contrast, PT13 arose in the Poaceae, suggesting that grasses acquired a particular strategy for the acquisition of symbiotic Pi. Surprisingly, mutations in either PT11 or PT13 affected the development of the symbiosis, demonstrating that both genes are important for AM symbiosis. For symbiotic Pi uptake, however, only PT11 is necessary and sufficient. Consequently, our results demonstrate that mycorrhizal rice depends on the AM symbiosis to satisfy its Pi demands, which is mediated by a single functional Pi transporter, PT11.
Resumo:
In Plasmodium falciparum, the formation of isopentenyl diphosphate and dimethylallyl diphosphate, central intermediates in the biosynthesis of isoprenoids, occurs via the methylerythritol phosphate (MEP) pathway. Fosmidomycin is a specific inhibitor of the second enzyme of the MEP pathway, 1-deoxy-D-xylulose-5-phosphate reductoisomerase. We analyzed the effect of fosmidomycin on the levels of each intermediate and its metabolic requirement for the isoprenoid biosynthesis, such as dolichols and ubiquinones, throughout the intraerythrocytic cycle of P. falciparum. The steady-state RNA levels of the MEP pathway-associated genes were quantified by real-time polymerase chain reaction and correlated with the related metabolite levels. Our results indicate that MEP pathway metabolite peak precede maximum transcript abundance during the intraerythrocytic cycle. Fosmidomycin-treatment resulted in a decrease of the intermediate levels in the MEP pathway as well as in ubiquinone and dolichol biosynthesis. The MEP pathway associated transcripts were modestly altered by the drug, indicating that the parasite is not strongly responsive at the transcriptional level. This is the first study that compares the effect of fosmidomycin on the metabolic and transcript profiles in P. falciparum, which has only the MEP pathway for isoprenoid biosynthesis.
Resumo:
cis-natural antisense transcripts (cis-NATs) are widespread in plants and are often associated with downregulation of their associated sense genes. We found that a cis-NAT positively regulates the level of a protein critical for phosphate homeostasis in rice (Oryza sativa). PHOSPHATE1;2 (PHO1;2), a gene involved in phosphate loading into the xylem in rice, and its associated cis-NATPHO1;2 are both controlled by promoters active in the vascular cylinder of roots and leaves. While the PHO1;2 promoter is unresponsive to the plant phosphate status, the cis-NATPHO1;2 promoter is strongly upregulated under phosphate deficiency. Expression of both cis-NATPHO1;2 and the PHO1;2 protein increased in phosphate-deficient plants, while the PHO1;2 mRNA level remained stable. Downregulation of cis-NATPHO1;2 expression by RNA interference resulted in a decrease in PHO1;2 protein, impaired the transfer of phosphate from root to shoot, and decreased seed yield. Constitutive overexpression of NATPHO1;2 in trans led to a strong increase of PHO1;2, even under phosphate-sufficient conditions. Under all conditions, no changes occurred in the level of expression, sequence, or nuclear export of PHO1;2 mRNA. However, expression of cis-NATPHO1;2 was associated with a shift of both PHO1;2 and cis-NATPHO1;2 toward the polysomes. These findings reveal an unexpected role for cis-NATPHO1;2 in promoting PHO1;2 translation and affecting phosphate homeostasis and plant fitness.