949 resultados para Oscillator strengths
Resumo:
We illustrate a reverse Von Neumann measurement scheme in which a geometric phase induced on a quantum harmonic oscillator is measured using a microscopic qubit as a probe. We show how such a phase, generated by a cyclic evolution in the phase space of the harmonic oscillator, can be kicked back on the qubit, which plays the role of a quantum interferometer. We also extend our study to finite-temperature dissipative Markovian dynamics and discuss potential implementations in micro-and nanomechanical devices coupled to an effective two-level system.
Resumo:
Non-Markovian evolutions are responsible for a wide variety of physically interesting effects. Here, we study nonlocality of the nonclassical state of a system consisting of a qubit and an oscillator exposed to the effects of non-Markovian evolutions. We find that the different facets of non-Markovianity affect nonlocality in different and nonobvious ways, ranging from pronounced insensitivity of the Bell function to quite spectacular evidence of information kickback.
Resumo:
1. Recent efforts to understand how the patterning of interaction strength affects both structure and dynamics in food webs have highlighted several obstacles to productive synthesis. Issues arise with respect to goals and driving questions, methods and approaches, and placing results in the context of broader ecological theory.
Resumo:
We have carried out a 29-state R-matrix calculation in order to calculate collision strengths and effective collision strengths for the electron impact excitation of S III. The recently developed parallel RMATRX II suite of codes have been used, which perform the calculation in intermediate coupling. Collision strengths have been generated over an electron energy range of 0-12 Ryd, and effective collision strength data have been calculated from these at electron temperatures in the range 1000-100,000 K. Results are here presented for the fine-structure transitions between the ground-state configurations of 3s(2)3p(2) P-3(0,1,2), D-1(2), and S-1(0), and the values given resolve a discrepancy between two previous R-matrix calculations.
Resumo:
Accurate fine-structure atomic data for the Fe-peak elements are essential for interpreting astronomical spectra. There is a severe paucity of data available for Sc II, highlighted by the fact that no collision strengths are readily available for this ion. We present electron-impact excitation collision strengths and Maxwellian averaged effective collision strengths for Sc II. The collision strengths were calculated for all 3916 transitions amongst 89 jj levels (arising from the 3d4s, 3d2, 4s2, 3d4p, 4s4p, 3d5s, 3d4d, 3d5p, 4p2 and 3d4f configurations), resulting in a 944 coupled channel problem. The R-matrix package RMATRXII was utilized, along with the transformation code FINE and the external region code PSTGF, to calculate the collision strengths for a range of incident electron energies in the 0 to 8.3 Rydberg region. Maxwellian averaged effective collision strengths were then produced for 27 temperatures lying within the astrophysically significant range of 30 to 105 K.
The collision strengths and effective collision strengths were produced for two different target models. The purpose was to systematically examine the effect of including open 3p correlation terms into the configuration interaction expansion for the wavefunction. The first model consisted of all 36 CI terms that could be generated with the 3p core closed. The second model incorporated an additional six configurations which allowed for single-electron excitations from within the 3p core. Comparisons are made between the two models and the results of Bautista et al., obtained by private communication. It is concluded that the first model produced the most reliable set of collision and effective collision strengths for use in astrophysical and plasma applications.
Design proposals for the debonding strengths of FRP strengthened RC beams in the Chinese design code
Resumo:
We address the estimation of purity for a quantum oscillator initially prepared in a displaced thermal state and probed by a suitably prepared qubit interacting with the oscillator via Jaynes-Cummings Hamiltonian without the rotating-wave approximation. We evaluate the quantum Fisher information (QFI) and show that optimal estimation of purity can be achieved by measuring the population of the qubit after a properly chosen interaction time. We also address the estimation of purity at fixed total energy and show that the corresponding precision is independent of the presence of a coherent amplitude.
Resumo:
We use the theory of quantum estimation in two different qubit-boson coupling models to demonstrate that the temperature of a quantum harmonic oscillator can be estimated with high precision by quantum-limited measurements on the qubit. The two models that we address embody situations of current physical interest due to their connection with ongoing experimental efforts on the control of mesoscopic dynamics. We show that population measurements performed over the qubit probe are near optimal for a broad range of temperatures of the harmonic oscillator.
Resumo:
We present Maxwellian-averaged effective collision strengths for the electron-impact excitation of S III over a wide range of electron temperatures of astrophysical importance, log Te (K) = 3.0-6.0. The calculation incorporates 53 fine-structure levels arising from the six configurations—3s 23p 2, 3s3p 3, 3s 23p3d, 3s 23p4s, 3s 23p4p, and 3s 23p4d—giving rise to 1378 individual lines and is undertaken using the recently developed RMATRX II plus FINE95 suite of codes. A detailed comparison is made with a previous R-matrix calculation and significant differences are found for some transitions. The atomic data are subsequently incorporated into the modeling code CLOUDY to generate line intensities for a range of plasma parameters, with emphasis on allowed ultraviolet extreme-ultraviolet emission lines detected from the Io plasma torus. Electron density-sensitive line ratios are calculated with the present atomic data and compared with those from CHIANTI v7.1, as well as with Io plasma torus spectra obtained by Far-Ultraviolet Spectroscopic Explorer and Extreme-Ultraviolet Explorer. The present line intensities are found to agree well with the observational results and provide a noticeable improvement on the values predicted by CHIANTI.
Resumo:
We address the presence of nondistillable (bound) entanglement in natural many-body systems. In particular, we consider standard harmonic and spin-1/2 chains, at thermal equilibrium and characterized by few interaction parameters. The existence of bound entanglement is addressed by calculating explicitly the negativity of entanglement for different partitions. This allows us to individuate a range of temperatures for which no entanglement can be distilled by means of local operations, despite the system being globally entangled. We discuss how the appearance of bound entanglement can be linked to entanglement-area laws, typical of these systems. Various types of interactions are explored, showing that the presence of bound entanglement is an intrinsic feature of these systems. In the harmonic case, we analytically prove that thermal bound entanglement persists for systems composed by an arbitrary number of particles. Our results strongly suggest the existence of bound entangled states in the macroscopic limit also for spin-1/2 systems.
Resumo:
We introduce a scheme to reconstruct arbitrary states of networks composed of quantum oscillators-e. g., the motionalstate of trapped ions or the radiation state of coupled cavities. The scheme involves minimal resources and minimal access, in the sense that it (i) requires only the interaction between a one-qubit probe and a single node of the network; (ii) provides the Weyl characteristic function of the network directly from the data, avoiding any tomographic transformation; (iii) involves the tuning of only one coupling parameter. In addition, we show that a number of quantum properties can be extracted without full reconstruction of the state. The scheme can be used for probing quantum simulations of anharmonic many-body systems and quantum computations with continuous variables. Experimental implementation with trapped ions is also discussed and shown to be within reach of current technology.
Resumo:
We consider a system composed of a qubit interacting with a quartic (undriven) nonlinear oscillator (NLO) through a conditional displacement Hamiltonian. We show that even a modest nonlinearity can enhance and stabilize the quantum entanglement dynamically generated between the qubit and the NLO. In contrast to the linear case, in which the entanglement is known to oscillate periodically between zero and its maximal value, the nonlinearity suppresses the dynamical decay of the entanglement once it is established. While the entanglement generation is due to the conditional displacements, as noted in several works before, the suppression of its decay is related to the presence of squeezing and other complex processes induced by two- and four-phonon interactions. Finally, we solve the respective Markovian master equation, showing that the previous features are preserved also when the system is open.
Resumo:
This paper will consider the inter-relationship of a number of overlapping disciplinary theoretical concepts relevant to a strengths-based orientation, including well-being, salutogenesis, sense of coherence, quality of life and resilience. Psychological trauma will be referenced and the current evidence base for interventions with children and young people outlined and critiqued. The relational impact of trauma on family relationships is emphasised, providing a rationale for systemic psychotherapeutic interventions as part of a holistic approach to managing the effects of trauma. The congruence between second-order systemic psychotherapy models and a strengths-based philosophy is noted, with particular reference to solution-focused brief therapy and narrative therapy, and illustrated; via a description of the process of helping someone move from a victim position to a survivor identity using solution-focused brief therapy, and through a case example applying a narrative therapy approach to a teenage boy who suffered a serious assault. The benefits of a strength-based approach to psychological trauma for the clients and therapists will be summarised and a number of potential pitfalls articulated.
Resumo:
Context: Mg VIII emission lines are observed in a range of astronomical objects such as the Sun, other cool stars and in the coronal line region of Seyfert galaxies. Under coronal conditions Mg VIII emits strongly in the extreme ultraviolet (EUV) and soft X-ray spectral regions which makes it an ideal ion for plasma diagnostics.
Aims. Two theoretical atomic models, consisting of 125 fine structure levels, are developed for the Mg VIII ion. The 125 levels arise from the 2s(2)2p, 2s(2)p2, 2p(3), 2s(2)3s, 2s(2)3p, 2s(2)3d, 2s2p3s, 2s2p3p, 2s2p3d, 2p(2)3s, 2p(2)3p and 2p(2)3d configurations. Electron impact excitation collision strengths and radiative transition probabilities are calculated for both Mg VIII models, compared with existing data, and the best model selected to generate a set of theoretical emission line intensities. The EUV lines, covering 312-790 angstrom, are compared with existing solar spectra (SERTS-89 and SUMER), while the soft X-ray transitions (69-97 angstrom) are examined for potential density diagnostic line ratios and also compared with the limited available solar and stellar observational data.
Methods. The R-matrix codes Breit-Pauli RMATRXI and RMATRXII are utilised, along with the PSTGF code, to calculate the collision strengths for two Mg VIII models. Collision strengths are averaged over a Maxwellian distribution to produce the corresponding effective collision strengths for use in astrophysical applications. Transition probabilities are also calculated using the CIV3 atomic structure code. The best data are then incorporated into the modelling code CLOUDY and line intensities generated for a range of electron temperatures and densities appropriate to solar and stellar coronal plasmas.
Results. The present effective collision strengths are compared with two previous calculations. Good levels of agreement are found with the most recent, but there are large differences with the other for forbidden transitions. The resulting line intensities compare favourably with the observed values from the SERTS-89 and SUMER spectra. Theoretical soft X-ray emission lines are presented and several density diagnostic line ratios examined, which are in reasonable agreement with the limited observational data available.