995 resultados para Orbital neoplasms


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Deficits in social cognition are prominent symptoms of many human psychiatric disorders, but the origin of such deficits remains largely unknown. To further current knowledge regarding the neural network mediating social cognition, the present research program investigated the individual contributions of two temporal lobe structures, the amygdala and hippocampal formation, and one frontal lobe region, the orbital frontal cortex (Areas 11 and 13), to primate social cognition. Based on previous research, we hypothesized that the amygdala, hippocampal formation and orbital frontal cortex contribute significantly to the formation of new social relationships, but less to the maintenance of familiar ones. ^ Thirty-six male rhesus macaques (Macaca mulatta) served as subjects, and were divided into four experimental groups: Neurotoxic amygdala lesion (A-ibo, n = 9), neurotoxic or aspiration orbital frontal cortex lesion (O, n = 9), neurotoxic hippocampal formation lesion (H-ibo, n = 9) or sham-operated control (C, n = 9). Six social groups (tetrads) were created, each containing one member from each experimental group. The effect of lesion on established social relationships was assessed during pre- and post-surgical unrestrained social interactions, whereas the effect of lesion on the formation of new relationships was assessed during an additional phase of post-surgical testing with shuffled tetrad membership. Results indicated that these three neural structures each contribute significantly to both the formation and maintenance of social relationships. Furthermore, the amygdala appears to primarily mediate normal responses to threatening social signals, whereas the orbital frontal cortex plays a more global role in social cognition by mediating responses to both threatening and affiliative social signals. By contrast, the hippocampal formation seems to contribute to social cognition indirectly by providing access to previous experience during social judgments. ^ These conclusions were further investigated with three experiments that measured behavioral and physiological (stress hormone) reactivity to threatening stimuli, and three additional experiments that measured subjects' ability to flexibly alter behavioral responses depending on the incentive value of a food reinforcer. Data from these six experiments further confirmed and strengthened the three conclusions originating from the social behavior experiments and, when combined with the current literature, helped to formulate a simple, but testable, theoretical model of primate social cognition. ^

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Many mental disorders disrupt social skills, yet few studies have examined how the brain processes social information. Functional neuroimaging, neuroconnectivity and electrophysiological studies suggest that orbital frontal cortex plays important roles in social cognition, including the analysis of information from faces, which are important cues in social interactions. Studies in humans and non-human primates show that damage to orbital frontal cortex produces social behavior impairments, including abnormal aggression, but these studies have failed to determine whether damage to this area impairs face processing. In addition, it is not known whether damage early in life is more detrimental than damage in adulthood. This study examined whether orbital frontal cortex is necessary for the discrimination of face identity and facial expressions, and for appropriate behavioral responses to aggressive (threatening) facial expressions. Rhesus monkeys (Macaca mulatta) received selective lesions of orbital frontal cortex as newborns or adults. As adults, these animals were compared with sham-operated controls on their ability to discriminate between faces of individual monkeys and between different facial expressions of emotion. A passive visual paired-comparison task with standardized rhesus monkey face stimuli was designed and used to assess discrimination. In addition, looking behavior toward aggressive expressions was assessed and compared with that of normal control animals. The results showed that lesion of orbital frontal cortex (1) may impair discrimination between faces of individual monkeys, (2) does not impair facial expression discrimination, and (3) changes the amount of time spent looking at aggressive (threatening) facial expressions depending on the context. The effects of early and late lesions did not differ. Thus, orbital frontal cortex appears to be part of the neural circuitry for recognizing individuals and for modulating the response to aggression in faces, and the plasticity of the immature brain does not allow for recovery of these functions when the damage occurs early in life. This study opens new avenues for the assessment of rhesus monkey face processing and the neural basis of social cognition, and allows a better understanding of the nature of the neuropathology in patients with mental disorders that disrupt social behavior, such as autism. ^

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A cohort study was conducted in Texas and Louisiana Gulf Coast area on individual workers who have been exposed to asbestos for 15 years or more. Most of these workers were employed in petrochemical industries. Of the 15,742 subjects initially selected for the cohort study, 3,258 had positive chest X-ray findings believed to be related to prolonged asbestos exposure. These subjects were further investigated. Their work out included detailed medical and occupational history, laboratory tests and spirometry. One thousand eight-hundred and three cases with positive chest X-ray findings whose data files were considered complete at the end of May 1986 were analyzed and their findings included in this report.^ The prevalence of lung cancer and cancer of the following sights: skin, stomach, oropharyngeal, pancreas and kidneys were significantly increased when compared to data from Connecticut Tumor Registry. The prevalence of other chronic conditions such as hypertension, emphysema, heart disease and peptic ulcer was also significantly high when compared to data for the U.S. and general population furnished by the National Center for Health Statistics (NCHS). In most instances the occurrence of cancer and the chronic ailment previously mentioned appeared to follow 15-25 years of exposure to asbestos. ^

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Colorectal cancer is a leading cause of cancer mortality and early detection can significantly improve the clinical outcome. Most colorectal cancers arise from benign neoplastic lesions recognized as adenomas. Only a small percentage of all adenomas will become malignant. Thus, there is a need to identify specific markers of malignant potential. Studies at the molecular level have demonstrated an accumulation of genetic alterations, some hereditary but for the most occurring in somatic cells. The most common are the activation of ras, an oncogene involved in signal transduction, and the inactivation of p53, a tumor suppressor gene implicated in cell cycle regulation. In this study, 38 carcinomas, 95 adenomas and 20 benign polyps were analyzed by immunohistochemistry for the abnormal expression of p53 and ras proteins. An index of cellular proliferation was also measured by labeling with PCNA. A general overexpression of p53 was immunodetected in 66% of the carcinomas, while 26% of adenomas displayed scattered individual positive cells or a focal high concentration of positive cells. This later was more associated with severe dysplasia. Ras protein was detected in 37% of carcinomas and 32% of adenomas mostly throughout the tissue. p53 immunodetection was more frequent in adenomas originating in colons with synchronous carcinomas, particularly in patients with familial adenomatous polyposis and it may be a useful marker in these cases. Difference in the frequency of p53 and ras alterationbs was related to the location of the neoplasm. Immunodetection of p53 protein was correlated to the presence of a mutation in p53 gene at exon 7 and 5 in 4/6 carcinomas studied and 2 villous adenomas. Thus, we characterized in adenomas the abnormal expression of two proteins encoded by the most commonly altered genes in colorectal cancer. p53 alteration appears to be more specifically associated with transition to malignancy than ras. By using immunohistochemistry, a technique that keeps the architecture of the tissue intact, it was possible to correlate these alterations to histopathological characteristics that were associated with higher risks for transformation: villous content, dysplasia and size of adenoma. ^

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A high-resolution stratigraphy is essential toward deciphering climate variability in detail and understanding causality arguments of events in earth history. Because the highly dynamic middle to late Eocene provides a suitable testing ground for carbon cycle models for a waning warm world, an accurate time scale is needed to decode climate-driving mechanisms. Here we present new results from ODP Site 1260 (Leg 207) which covers a unique expanded middle Eocene section (magnetochrons C18r to C20r, late Lutetian to early Bartonian) of the tropical western Atlantic including the chron C19r transient hyperthermal event and the Middle Eocene Climate Optimum (MECO). To establish a detailed cyclostratigraphy we acquired a distinctive iron intensity records by XRF scanning Site 1260 cores. We revise the shipboard composite section, establish a cyclostratigraphy and use the exceptional eccentricity modulated precession cycles for orbital tuning. The new astrochronology revises the age of magnetic polarity chrons C19n to C20n, validates the position of very long eccentricity minima at 40.2 and 43.0 Ma in the orbital solutions, and extends the Astronomically Tuned Geological Time Scale back to 44 Ma. For the first time the new data provide clear evidence for an orbital pacing of the chron C19r event and a likely involvement of the very long eccentricity cycle contributing to the evolution of the MECO.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Southern Hemisphere Westerly Winds (SWW) have been suggested to exert a critical influence on global climate through wind-driven upwelling of deep water in the Southern Ocean and the potentially resulting atmospheric CO2 variations. The investigation of the temporal and spatial evolution of the SWW along with forcings and feedbacks remains a significant challenge in climate research. In this study, the evolution of the SWW under orbital forcing from the early Holocene (9 kyr BP) to pre-industrial modern times is examined with transient experiments using the comprehensive coupled global climate model CCSM3. Analyses of the model results suggest that the annual and seasonal mean SWW were subject to an overall strengthening and poleward shifting trend during the course of the early-to-late Holocene under the influence of orbital forcing, except for the austral spring season, where the SWW exhibited an opposite trend of shifting towards the equator.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

During the past five million yrs, benthic d18O records indicate a large range of climates, from warmer than today during the Pliocene Warm Period to considerably colder during glacials. Antarctic ice cores have revealed Pleistocene glacial-interglacial CO2 variability of 60-100 ppm, while sea level fluctuations of typically 125 m are documented by proxy data. However, in the pre-ice core period, CO2 and sea level proxy data are scarce and there is disagreement between different proxies and different records of the same proxy. This hampers comprehensive understanding of the long-term relations between CO2, sea level and climate. Here, we drive a coupled climate-ice sheet model over the past five million years, inversely forced by a stacked benthic d18O record. We obtain continuous simulations of benthic d18O, sea level and CO2 that are mutually consistent. Our model shows CO2 concentrations of 300 to 470 ppm during the Early Pliocene. Furthermore, we simulate strong CO2 variability during the Pliocene and Early Pleistocene. These features are broadly supported by existing and new d11B-based proxy CO2 data, but less by alkenone-based records. The simulated concentrations and variations therein are larger than expected from global mean temperature changes. Our findings thus suggest a smaller Earth System Sensitivity than previously thought. This is explained by a more restricted role of land ice variability in the Pliocene. The largest uncertainty in our simulation arises from the mass balance formulation of East Antarctica, which governs the variability in sea level, but only modestly affects the modeled CO2 concentrations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Time control is essential for the reconstruction of geological processes. We use a combination of relative and absolute methods to establish the chronology and related paleoclimatic processes for Late Neogene lacustrine sediment from the Ptolemais Basin, northern Greece. We determined changes in magnetic polarity and correlated them to the global magnetic polarity time scale, which again is calibrated by radiometric methods, to provide a low-resolution age model for the Upper Miocene to Lower Pliocene (7 - 3 Ma). Sedimentary successions show rhythmic alterations of lignites, clays, and marls. Using photospetrometry we measured this variability at 1-cm resolution, and correlated the pattern to known changes in earth's orbital parameters, namely to eccentricity and precession. For 230-m long borehole KAP-107 from the Amynteon Sub-Basin we obtained a high-resolution age model that spans 2 myr from 5.1 to 3.1 Ma, with age control points at insolation maxima (20-kyr resolution). We recommend using photospectrometry as reliable tool to establish orbital-based chronologies and to reconstruct paleoclimate variability at high resolution.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The increase of orbital debris and the consequent proliferation of smaller objects through fragmentation are driving the need for mitigation strategies. The issue is how to deorbit the satellite with an efficient system that does not impair drastically the propellant budget of the satellite and, consequently, reduces its operating life. We have been investigating, in the framework of a European-Community-funded project, a passive system that makes use of an electrodynamics tether to deorbit a satellite through Lorentz forces. The deorbiting system will be carried by the satellite itself at launch and deployed from the satellite at the end of its life. From that moment onward the system operates passively without requiring any intervention from the satellite itself. The paper summarizes the results of the analysis carried out to show the deorbiting performance of the system starting from different orbital altitudes and inclinations for a reference satellite mass. Results can be easily scaled to other satellite masses. The results have been obtained by using a high-fidelity computer model that uses the latest environmental routines for magnetic field, ionospheric density, atmospheric density and a gravity field model. The tether dynamics is modelled by considering all the main aspects of a real system as the tether flexibility and its temperature-dependent electrical conductivity. Temperature variations are computed by including all the major external and internal input fluxes and the thermal flux emitted from the tether. The results shows that a relatively compact and light system can carry out the complete deorbit of a relatively large satellite in a time ranging from a month to less than a year starting from high LEO with the best performance occurring at low orbital inclinations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An asymptotic analysis of electron collection at high bias Fp serves to determine the domain of validity of the orbital-motion-limited regime of cylindrical Langmuir probes, which is basic for the workings of conductive bare tethers. The radius of a wire collecting OML current in an unmagnetized plasma at rest cannot exceed a value, Rmax , which is found to exhibit a minimum as a function of Fp ; atFp values of interest, Rmax is already increasing and is larger than the electron Debye length lDe . The breakdown of the regime relates to conditions far fromthe probe, at electron energies comparable to the ion thermal energy, kTi ; Rmax is found to increase with Ti . It is also found that ~1! the maximumwidth of a thin tape, if used instead of a wire, is 4Rmax ; ~2! the electron thermal gyroradius must be larger than both R and lDe for magnetic effects to be negligible; and ~3! conditions applying to the tether case are such that trapped-orbit effects are negligible.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The current I to a cylindrical probe at rest in an unmagnetized plasma, with probe bias highly positive, is determined. The way I lags behind the orbital-motion-limited OMLcurrent, 1 OML R, as the radius R exceeds the maximum radius for the OML regime to hold, is of interest for space-tether applications. The ratio I/I OML is roughly a decreasing function of R/lD R max /lDe , which is independent of bias, with lDe the electron Debye length and Rmax /l De roughly an increasing function of the temperature ratio, Ti /Te. The dependence of current on ion energy is used to discuss the effect of probe motion through the plasma, a case applying to tethers in low orbit.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An electrodynamic tether system for power generation at Jupiter is presented that allows extracting energy from Jupiter's corotating plasmasphere while leaving the system orbital energy unaltered to first order. The spacecraft is placed in a polar orbit with the tether spinning in the orbital plane so that the resulting Lorentz force, neglecting Jupiter's magnetic dipole tilt, is orthogonal to the instantaneous velocity vector and orbital radius, hence affecting orbital inclination rather than orbital energy. In addition, the electrodynamic tether subsystem, which consists of two radial tether arms deployed from the main central spacecraft, is designed in such a way as to extract maximum power while keeping the resulting Lorentz torque constantly null. The power-generation performance of the system and the effect on the orbit inclination is evaluated analytically for different orbital conditions and verified numerically. Finally, a thruster-based inclination-compensation maneuver at apoapsis is added, resulting in an efficient scheme to extract energy from the plasmasphere of the planet with minimum propellant consumption and no inclination change. A tradeoff analysis is conducted showing that, depending on tether size and orbit characteristics, the system performance can be considerably higher than conventional power-generation methods.