983 resultados para Operating environment indicator
Resumo:
Background: We studied the characteristics of family functioning in bipolar children and healthy comparison children. We hypothesized that the family environment of bipolar children would show greater levels of dysfunction as measured by the Family Environment Scale (FES). Methods: We compared the family functioning of 36 families that included a child with DSM-IV bipolar disorder versus 29 comparison families that included only healthy children. All subjects and their parents were assessed with the K-SADS-PL interview. The parents completed the FES to assess their current family functioning. Multivariate analysis of variance was used to compare the family environment of families with and without offspring with bipolar disorder. Results: Parents of bipolar children reported lower levels of family cohesion (p<0.001), expressiveness (p=0.005), active-recreational orientation (p<0.001), intellectual-cultural orientation (p=0.04) and higher levels of conflict (p<0.001) compared to parents with no bipolar children. Secondary analyses within the bipolar group revealed lower levels of organization (p=0.03 1) and cohesion (p=0.014) in families where a parent had a history of mood disorders compared to families where parents had no history of mood disorders. Length of illness in the affected child was inversely associated with family cohesion (r=-0.47, p=0.004). Limitations: Due to the case-control design of the study, we cannot comment on the development of these family problems or attribute their cause specifically to child bipolar disorder. Conclusion: Families with bipolar children show dysfunctional patterns related to interpersonal interactions and personal growth. A distressed family environment should be addressed when treating children with bipolar disorder. (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
Coastal wetlands are dynamic and include the freshwater-intertidal interface. In many parts of the world such wetlands are under pressure from increasing human populations and from predicted sea-level rise. Their complexity and the limited knowledge of processes operating in these systems combine to make them a management challenge.Adaptive management is advocated for complex ecosystem management (Hackney 2000; Meretsky et al. 2000; Thom 2000;National Research Council 2003).Adaptive management identifies management aims,makes an inventory/environmental assessment,plans management actions, implements these, assesses outcomes, and provides feedback to iterate the process (Holling 1978;Walters and Holling 1990). This allows for a dynamic management system that is responsive to change. In the area of wetland management recent adaptive approaches are exemplified by Natuhara et al. (2004) for wild bird management, Bunch and Dudycha (2004) for a river system, Thom (2000) for restoration, and Quinn and Hanna (2003) for seasonal wetlands in California. There are many wetland habitats for which we currently have only rudimentary knowledge (Hackney 2000), emphasizing the need for good information as a prerequisite for effective management. The management framework must also provide a way to incorporate the best available science into management decisions and to use management outcomes as opportunities to improve scientific understanding and provide feedback to the decision system. Figure 9.1 shows a model developed by Anorov (2004) based on the process-response model of Maltby et al. (1994) that forms a framework for the science that underlies an adaptive management system in the wetland context.