973 resultados para Open Channel Flow Controls


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Ischemic pain occurs when there is insufficient blood flow for the metabolic needs of an organ. The pain of a heart attack is the prototypical example. Multiple compounds released from ischemic muscle likely contribute to this pain by acting on sensory neurons that innervate muscle. One such compound is lactic acid. Here, we show that ASIC3 (acid-sensing ion channel #3) has the appropriate expression pattern and physical properties to be the detector of this lactic acid. In rats, it is expressed only in sensory neurons and then only on a minority (~40%) of these. Nevertheless, it is expressed at extremely high levels on virtually all dorsal root ganglion sensory neurons that innervate the heart. It is extraordinarily sensitive to protons (Hill slope 4, half-activating pH 6.7), allowing it to readily respond to the small changes in extracellular pH (from 7.4 to 7.0) that occur during muscle ischemia. Moreover, both extracellular lactate and extracellular ATP increase the sensitivity of ASIC3 to protons. This final property makes ASIC3 a "coincidence detector" of three molecules that appear during ischemia, thereby allowing it to better detect acidosis caused by ischemia than other forms of systemic acidosis such as hypercapnia.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This thesis studies the advantages, disadvantages and possibilities of additive manufacturing in making components with internal flow channels. These include hydraulic components, components with cooling channels and heat exchangers. Processes studied in this work are selective laser sintering and selective laser melting of metallic materials. The basic principles of processes and parameters involved in the process are presented and different possibilities of internal channel manufacturing and flow improvement are introduced

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Subclinical hypothyroidism (SHT) is a disease for which exact therapeutic approaches have not yet been established. Previous studies have suggested an association between SHT and coronary heart disease. Whether this association is related to SHT-induced changes in serum lipid levels or to endothelial dysfunction is unclear. The aim of this study was to determine endothelial function measured by the flow-mediated vasodilatation of the brachial artery and the carotid artery intima-media thickness (IMT) in a group of women with SHT compared with euthyroid subjects. Triglycerides, total cholesterol, HDL-C, LDL-C, apoprotein A (apo A), apo B, and lipoprotein(a) were also determined. Twenty-one patients with SHT (mean age: 42.4 ± 10.8 years and mean thyroid-stimulating hormone (TSH) levels: 8.2 ± 2.7 µIU/mL) and 21 euthyroid controls matched for body mass index, age and atherosclerotic risk factors (mean age: 44.2 ± 8.5 years and mean TSH levels: 1.4 ± 0.6 µIU/mL) participated in the study. Lipid parameters (except HDL-C and apo A, which were lower) and IMT values were higher in the common carotid and carotid bifurcation of SHT patients with positive serum thyroid peroxidase antibodies (TPO-Ab) (0.62 ± 0.2 and 0.62 ± 0.16 mm for the common carotid and carotid bifurcation, respectively) when compared with the negative TPO-Ab group (0.55 ± 0.24 and 0.58 ± 0.13 mm, for common carotid and carotid bifurcation, respectively). The difference was not statistically significant. We conclude that minimal thyroid dysfunction had no adverse effects on endothelial function in the population studied. Further investigation is warranted to assess whether subclinical hypothyroidism, with and without TPO-Ab-positive serology, has any effect on endothelial function.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Physical exercise triggers coordinated physiological responses to meet the augmented metabolic demand of contracting muscles. To provide adequate responses, the brain must receive sensory information about the physiological status of peripheral tissues and organs, such as changes in osmolality, temperature and pH. Most of the receptors involved in these afferent pathways express ion channels, including transient receptor potential (TRP) channels, which are usually activated by more than one type of stimulus and are therefore considered polymodal receptors. Among these TRP channels, the TRPV1 channel (transient receptor potential vanilloid type 1 or capsaicin receptor) has well-documented functions in the modulation of pain sensation and thermoregulatory responses. However, the TRPV1 channel is also expressed in non-neural tissues, suggesting that this channel may perform a broad range of functions. In this review, we first present a brief overview of the available tools for studying the physiological roles of the TRPV1 channel. Then, we present the relationship between the TRPV1 channel and spontaneous locomotor activity, physical performance, and modulation of several physiological responses, including water and electrolyte balance, muscle hypertrophy, and metabolic, cardiovascular, gastrointestinal, and inflammatory responses. Altogether, the data presented herein indicate that the TPRV1 channel modulates many physiological functions other than nociception and thermoregulation. In addition, these data open new possibilities for investigating the role of this channel in the acute effects induced by a single bout of physical exercise and in the chronic effects induced by physical training.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Bedrock channels have been considered challenging geomorphic settings for the application of numerical models. Bedrock fluvial systems exhibit boundaries that are typically less mobile than alluvial systems, yet they are still dynamic systems with a high degree of spatial and temporal variability. To understand the variability of fluvial systems, numerical models have been developed to quantify flow magnitudes and patterns as the driving force for geomorphic change. Two types of numerical model were assessed for their efficacy in examining the bedrock channel system consisting of a high gradient portion of the Twenty Mile Creek in the Niagara Region of Ontario, Canada. A one-dimensional (1-D) flow model that utilizes energy equations, HEC RAS, was used to determine velocity distributions through the study reach for the mean annual flood (MAF), the 100-year return flood and the 1,000-year return flood. A two-dimensional (2-D) flow model that makes use of Navier-Stokes equations, RMA2, was created with the same objectives. The 2-D modeling effort was not successful due to the spatial complexity of the system (high slope and high variance). The successful 1 -D model runs were further extended using very high resolution geospatial interpolations inherent to the HEC RAS extension, HEC geoRAS. The modeled velocity data then formed the basis for the creation of a geomorphological analysis that focused upon large particles (boulders) and the forces needed to mobilize them. Several existing boulders were examined by collecting detailed measurements to derive three-dimensional physical models for the application of fluid and solid mechanics to predict movement in the study reach. An imaginary unit cuboid (1 metre by 1 metre by 1 metre) boulder was also envisioned to determine the general propensity for the movement of such a boulder through the bedrock system. The efforts and findings of this study provide a standardized means for the assessment of large particle movement in a bedrock fluvial system. Further efforts may expand upon this standardization by modeling differing boulder configurations (platy boulders, etc.) at a high level of resolution.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Affiliation: Faculté de médecine, Université de Montréal & CANVAC

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Affiliation: André Dagenais: Centre hospitalier de l'Université de Montréal/ Hôtel-Dieu, Département de médecine, Université de Montréal. Yves Berthiaume: Médecine et spécialités médicales, Faculté de médecine

Relevância:

30.00% 30.00%

Publicador:

Resumo:

La pathologie de la fibrose kystique (FK) est causée par des mutations du gène codant pour le canal Cl- CFTR. Au niveau respiratoire, cette dysfonction du transport transépithélial de Cl- occasionne une altération de la composition et du volume du liquide de surface des voies aériennes. Une accumulation de mucus déshydraté favorise alors la colonisation bactérienne et une réponse inflammatoire chronique, entraînant des lésions épithéliales sévères au niveau des voies aériennes et des alvéoles pouvant culminer en défaillance respiratoire. Le principal objectif de mon projet de maîtrise était d’étudier les processus de réparation de l’épithélium alvéolaire sain, l’épithélium bronchique sain et FK à l’aide d’un modèle in vitro de plaies mécaniques. Nos résultats démontrent la présence d’une boucle autocrine EGF/EGFR contrôlant les processus de migration cellulaire et de réparation des lésions mécaniques. D’autre part, nos expériences montrent que l’EGF stimule l’activité et l’expression des canaux K+ KATP, KvLQT1 et KCa3.1 des cellules épithéliales respiratoires. L’activation de ces canaux est cruciale pour les processus de réparation puisque la majeure partie de la réparation stimulée à l’EGF est abolie en présence d’inhibiteurs de ces canaux. Nous avons également observé que les cellules FK présentent un délai de réparation, probablement causé par un défaut de la réponse EGF/EGFR et une activité/expression réduite des canaux K+. Nos résultats permettent de mieux comprendre les mécanismes de régulation des processus de réparation de l’épithélium sain et FK. De plus, ils ouvrent de nouvelles options thérapeutiques visant à promouvoir, à l’aide d’activateurs de canaux K+ et de facteurs de croissance, la régénération de l’épithélium respiratoire chez les patients atteints de FK.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Differentes études ont montré que la sensibilité au Ca2+ du canal KCa3.1, un canal potassique indépendant du voltage, était conférée par la protéine calmoduline (CaM) liée de façon constitutive au canal. Cette liaison impliquerait la région C-lobe de la CaM et un domaine de $\ikca$ directement relié au segment transmembranaire S6 du canal. La CaM pourrait égalment se lier au canal de façon Ca2+ dépendante via une interaction entre un domaine de KCa3.1 du C-terminal (CaMBD2) et la région N-lobe de la CaM. Une étude fut entreprise afin de déterminer la nature des résidus responsables de la liaison entre le domaine CaMBD2 de KCa3.1 et la région N-lobe de la CaM et leur rôle dans le processus d'ouverture du canal par le Ca2+. Une structure 3D du complexe KCa3.1/CaM a d'abord été générée par modélisation par homologie avec le logiciel MODELLER en utilisant comme référence la structure cristalline du complexe SK2.2/CaM (PDB: 1G4Y). Le modèle ainsi obtenu de KCa3.1 plus CaM prévoit que le segment L361-S372 dans KCa3.1 devrait être responsable de la liaison dépendante du Ca2+ du canal avec la région N-lobe de la CaM via les résidus L361 et Q364 de KCa3.1 et E45, E47 et D50 de la CaM. Pour tester ce modèle, les résidus dans le segment L361-S372 ont été mutés en Cys et l'action du MTSET+ (chargé positivement) et MTSACE (neutre) a été mesurée sur l'activité du canal. Des enregistrements en patch clamp en configuration ``inside-out`` ont montré que la liaison du réactif chargé MTSET+ au le mutant Q364C entraîne une forte augmentation du courant, un effet non observé avec le MTSACE. De plus les mutations E45A et E47A dans la CaM, ont empêché l'augmentation du courant initié par MTSET+ sur le mutant Q364C. Une analyse en canal unitaire a confirmé que la liaison MTSET+ à Q364C cause une augmentation de la probabilité d'ouverture de KCa3.1 par une déstabilisation de l'état fermé du canal. Nous concluons que nos résultats sont compatibles avec la formation de liaisons ioniques entre les complexes chargés positivement Cys-MTSET+ à la position 364 de KCa3.1 et les résidus chargés négativement E45 et E47 dans la CaM. Ces données confirment qu'une stabilisation électrostatique des interactions CaM/KCa3.1 peut conduire à une augmentation de la probabilité d'ouverture du canal en conditions de concentrations saturantes de Ca2+.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In Wireless Sensor Networks (WSN), neglecting the effects of varying channel quality can lead to an unnecessary wastage of precious battery resources and in turn can result in the rapid depletion of sensor energy and the partitioning of the network. Fairness is a critical issue when accessing a shared wireless channel and fair scheduling must be employed to provide the proper flow of information in a WSN. In this paper, we develop a channel adaptive MAC protocol with a traffic-aware dynamic power management algorithm for efficient packet scheduling and queuing in a sensor network, with time varying characteristics of the wireless channel also taken into consideration. The proposed protocol calculates a combined weight value based on the channel state and link quality. Then transmission is allowed only for those nodes with weights greater than a minimum quality threshold and nodes attempting to access the wireless medium with a low weight will be allowed to transmit only when their weight becomes high. This results in many poor quality nodes being deprived of transmission for a considerable amount of time. To avoid the buffer overflow and to achieve fairness for the poor quality nodes, we design a Load prediction algorithm. We also design a traffic aware dynamic power management scheme to minimize the energy consumption by continuously turning off the radio interface of all the unnecessary nodes that are not included in the routing path. By Simulation results, we show that our proposed protocol achieves a higher throughput and fairness besides reducing the delay

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Since no physical system can ever be completely isolated from its environment, the study of open quantum systems is pivotal to reliably and accurately control complex quantum systems. In practice, reliability of the control field needs to be confirmed via certification of the target evolution while accuracy requires the derivation of high-fidelity control schemes in the presence of decoherence. In the first part of this thesis an algebraic framework is presented that allows to determine the minimal requirements on the unique characterisation of arbitrary unitary gates in open quantum systems, independent on the particular physical implementation of the employed quantum device. To this end, a set of theorems is devised that can be used to assess whether a given set of input states on a quantum channel is sufficient to judge whether a desired unitary gate is realised. This allows to determine the minimal input for such a task, which proves to be, quite remarkably, independent of system size. These results allow to elucidate the fundamental limits regarding certification and tomography of open quantum systems. The combination of these insights with state-of-the-art Monte Carlo process certification techniques permits a significant improvement of the scaling when certifying arbitrary unitary gates. This improvement is not only restricted to quantum information devices where the basic information carrier is the qubit but it also extends to systems where the fundamental informational entities can be of arbitary dimensionality, the so-called qudits. The second part of this thesis concerns the impact of these findings from the point of view of Optimal Control Theory (OCT). OCT for quantum systems utilises concepts from engineering such as feedback and optimisation to engineer constructive and destructive interferences in order to steer a physical process in a desired direction. It turns out that the aforementioned mathematical findings allow to deduce novel optimisation functionals that significantly reduce not only the required memory for numerical control algorithms but also the total CPU time required to obtain a certain fidelity for the optimised process. The thesis concludes by discussing two problems of fundamental interest in quantum information processing from the point of view of optimal control - the preparation of pure states and the implementation of unitary gates in open quantum systems. For both cases specific physical examples are considered: for the former the vibrational cooling of molecules via optical pumping and for the latter a superconducting phase qudit implementation. In particular, it is illustrated how features of the environment can be exploited to reach the desired targets.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Electroosmotic flow is a convenient mechanism for transporting polar fluid in a microfluidic device. The flow is generated through the application of an external electric field that acts on the free charges that exists in a thin Debye layer at the channel walls. The charge on the wall is due to the chemistry of the solid-fluid interface, and it can vary along the channel, e.g. due to modification of the wall. This investigation focuses on the simulation of the electroosmotic flow (EOF) profile in a cylindrical microchannel with step change in zeta potential. The modified Navier-Stoke equation governing the velocity field and a non-linear two-dimensional Poisson-Boltzmann equation governing the electrical double-layer (EDL) field distribution are solved numerically using finite control-volume method. Continuities of flow rate and electric current are enforced resulting in a non-uniform electrical field and pressure gradient distribution along the channel. The resulting parabolic velocity distribution at the junction of the step change in zeta potential, which is more typical of a pressure-driven velocity flow profile, is obtained.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This study examines specific auditory features perceived by profoundly hearing-impaired children using conventional binaural hearing aids and the Nucleus 22 Channel Cochlear Implant. The primary interest of this study was to learn which speech features were most easily perceived by users of each device.