993 resultados para Oocyte morphological classification


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Affect is an important feature of multimedia content and conveys valuable information for multimedia indexing and retrieval. Most existing studies for affective content analysis are limited to low-level features or mid-level representations, and are generally criticized for their incapacity to address the gap between low-level features and high-level human affective perception. The facial expressions of subjects in images carry important semantic information that can substantially influence human affective perception, but have been seldom investigated for affective classification of facial images towards practical applications. This paper presents an automatic image emotion detector (IED) for affective classification of practical (or non-laboratory) data using facial expressions, where a lot of “real-world” challenges are present, including pose, illumination, and size variations etc. The proposed method is novel, with its framework designed specifically to overcome these challenges using multi-view versions of face and fiducial point detectors, and a combination of point-based texture and geometry. Performance comparisons of several key parameters of relevant algorithms are conducted to explore the optimum parameters for high accuracy and fast computation speed. A comprehensive set of experiments with existing and new datasets, shows that the method is effective despite pose variations, fast, and appropriate for large-scale data, and as accurate as the method with state-of-the-art performance on laboratory-based data. The proposed method was also applied to affective classification of images from the British Broadcast Corporation (BBC) in a task typical for a practical application providing some valuable insights.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The paper presents data on petrology, bulk rock and mineral compositions, and textural classification of the Middle Jurassic Jericho kimberlite (Slave craton, Canada). The kimberlite was emplaced as three steep-sided pipes in granite that was overlain by limestones and minor soft sediments. The pipes are infilled with hypabyssal and pyroclastic kimberlites and connected to a satellite pipe by a dyke. The Jericho kimberlite is classified as a Group Ia, lacking groundmass tetraferriphlogopite and containing monticellite pseudomorphs. The kimberlite formed, during several consecutive emplacement events of compositionally different batches of kimberlite magma. Core-logging and thin-section observations identified at least two phases of hypabyssal kimberlites and three phases of pyroclastic kimberlites. Hypabyssal kimberlites intruded as a main dyke (HK1) and as late small-volume aphanitic and vesicular dykes. Massive pyroclastic kimberlite (MPK1) predominantly filled the northern and southern lobes of the pipe and formed from magma different from the HK1 magma. The MPK1 magma crystallized Ti-, Fe-, and Cr-rich phlogopite without rims of barian phlogopite, and clinopyroxene and spinel without atoll structures. MPK1 textures, superficially reminiscent of tuffisitic kimberlite, are caused by pervasive contamination by granite xenoliths. The next explosive events filled the central lobe with two varieties of pyroclastic kimberlite: (1) massive and (2) weakly bedded, normally graded pyroclastic kimberlite. The geology of the Jericho pipe differs from the geology of South African or the Prairie kimberlites, but may resemble Lac de Gras pipes, in which deeper erosion removed upper fades of resedimented kimberlites.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

To classify each stage for a progressing disease such as Alzheimer’s disease is a key issue for the disease prevention and treatment. In this study, we derived structural brain networks from diffusion-weighted MRI using whole-brain tractography since there is growing interest in relating connectivity measures to clinical, cognitive, and genetic data. Relatively little work has usedmachine learning to make inferences about variations in brain networks in the progression of the Alzheimer’s disease. Here we developed a framework to utilize generalized low rank approximations of matrices (GLRAM) and modified linear discrimination analysis for unsupervised feature learning and classification of connectivity matrices. We apply the methods to brain networks derived from DWI scans of 41 people with Alzheimer’s disease, 73 people with EMCI, 38 people with LMCI, 47 elderly healthy controls and 221 young healthy controls. Our results show that this new framework can significantly improve classification accuracy when combining multiple datasets; this suggests the value of using data beyond the classification task at hand to model variations in brain connectivity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Human expert analyses are commonly used in bioacoustic studies and can potentially limit the reproducibility of these results. In this paper, a machine learning method is presented to statistically classify avian vocalizations. Automated approaches were applied to isolate bird songs from long field recordings, assess song similarities, and classify songs into distinct variants. Because no positive controls were available to assess the true classification of variants, multiple replicates of automatic classification of song variants were analyzed to investigate clustering uncertainty. The automatic classifications were more similar to the expert classifications than expected by chance. Application of these methods demonstrated the presence of discrete song variants in an island population of the New Zealand hihi (Notiomystis cincta). The geographic patterns of song variation were then revealed by integrating over classification replicates. Because this automated approach considers variation in song variant classification, it reduces potential human bias and facilitates the reproducibility of the results.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Social media platforms, that foster user generated content, have altered the ways consumers search for product related information. Conducting online searches, reading product reviews, and comparing products ratings, is becoming a more common information seeking pathway. This research demonstrates that info-active consumers are becoming less reliant on information provided by retailers or manufacturers, hence marketing generated online content may have a reduced impact on their purchasing behaviour. The results of this study indicate that beyond traditional methods of segmenting consumers, in the online context, new classifications such as info-active and info-passive would be beneficial in digital marketing. This cross-sectional, mixed-methods study is based on 43 in-depth interviews and an online survey with 500 consumers from 30 countries.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Modularity has been suggested to be connected to evolvability because a higher degree of independence among parts allows them to evolve as separate units. Recently, the Escoufier RV coefficient has been proposed as a measure of the degree of integration between modules in multivariate morphometric datasets. However, it has been shown, using randomly simulated datasets, that the value of the RV coefficient depends on sample size. Also, so far there is no statistical test for the difference in the RV coefficient between a priori defined groups of observations. Here, we (1), using a rarefaction analysis, show that the value of the RV coefficient depends on sample size also in real geometric morphometric datasets; (2) propose a permutation procedure to test for the difference in the RV coefficient between a priori defined groups of observations; (3) show, through simulations, that such a permutation procedure has an appropriate Type I error; (4) suggest that a rarefaction procedure could be used to obtain sample-size-corrected values of the RV coefficient; and (5) propose a nearest-neighbor procedure that could be used when studying the variation of modularity in geographic space. The approaches outlined here, readily extendable to non-morphometric datasets, allow study of the variation in the degree of integration between a priori defined modules. A Java application – that will allow performance of the proposed test using a software with graphical user interface – has also been developed and is available at the Morphometrics at Stony Brook Web page (http://life.bio.sunysb.edu/morph/).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The possible differences between sexes in patterns of morphological variation in geographical space have been explored only in gonochorist freshwater species. We explored patterns of body shape variation in geographical space in a marine sequential hermaphrodite species, Coris julis (L. 1758), analyzing variation both within and between colour phases, through the use of geometric morphometrics and spatially-explicit statistical analyses. We also tested for the association of body shape with two environmental variables: temperature and chlorophyll a concentration, as obtained from time-series of satellite-derived data. Both colour phases showed a significant morphological variation in geographical space and patterns of variation divergent between phases. Although the morphological variation was qualitatively similar, individuals in the initial colour phase showed a more marked variation than individuals in the terminal phase. Body shape showed a weak but significant correlation with environmental variables, which was more pronounced in primary specimens.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the present study, variation in the morphology of the lower pharyngeal element between two Sicilian populations of the rainbow wrasse Coris julis has been explored by the means of traditional morphometrics for size and geometric morphometrics for shape. Despite close geographical distance and probable high genetic flow between the populations, statistically significant differences have been found both for size and shape. In fact, one population shows a larger lower pharyngeal element that has a larger central tooth. Compared to the other population, this population also has medially enlarged lower pharyngeal jaws with a more pronounced convexity of the medial-posterior margin. The results are discussed in the light of a possible more pronounced durophagy of this population.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A combined data matrix consisting of high performance liquid chromatography–diode array detector (HPLC–DAD) and inductively coupled plasma-mass spectrometry (ICP-MS) measurements of samples from the plant roots of the Cortex moutan (CM), produced much better classification and prediction results in comparison with those obtained from either of the individual data sets. The HPLC peaks (organic components) of the CM samples, and the ICP-MS measurements (trace metal elements) were investigated with the use of principal component analysis (PCA) and the linear discriminant analysis (LDA) methods of data analysis; essentially, qualitative results suggested that discrimination of the CM samples from three different provinces was possible with the combined matrix producing best results. Another three methods, K-nearest neighbor (KNN), back-propagation artificial neural network (BP-ANN) and least squares support vector machines (LS-SVM) were applied for the classification and prediction of the samples. Again, the combined data matrix analyzed by the KNN method produced best results (100% correct; prediction set data). Additionally, multiple linear regression (MLR) was utilized to explore any relationship between the organic constituents and the metal elements of the CM samples; the extracted linear regression equations showed that the essential metals as well as some metallic pollutants were related to the organic compounds on the basis of their concentrations

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this article we present the morphological and magnetic characterization of ferrofluid-impregnated biomimetic scaffolds made of hydroxyapatite and collagen used for bone reconstruction. We describe an innovative and simple impregnation process by which the ferrofluid is firmly adsorbed onto the hydroxyapatite/collagen scaffolds. The process confers sufficient magnetization to attract potential magnetic carriers, which may be used to transport bioactive agents that favour bone regeneration. The crystalline structure of the magnetite contained in the ferrofluid is preserved and its quantity, estimated from the weight gain due to the impregnation process, is consistent with that obtained from energy dispersive X-ray spectroscopy. The magnetization, measured with a superconducting quantum interference device, is uniform throughout the scaffolds, demonstrating the efficiency of the impregnation process. The field emission gun scanning electron microscopy characterization demonstrates that the process does not alter the morphology of the hydroxyapatite/collagen scaffolds, which is essential for the preservation of their bioactivity and consequently for their effectiveness in promoting bone formation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A novel combined near- and mid-infrared (NIR and MIR) spectroscopic method has been researched and developed for the analysis of complex substances such as the Traditional Chinese Medicine (TCM), Illicium verum Hook. F. (IVHF), and its noxious adulterant, Iuicium lanceolatum A.C. Smith (ILACS). Three types of spectral matrix were submitted for classification with the use of the linear discriminant analysis (LDA) method. The data were pretreated with either the successive projections algorithm (SPA) or the discrete wavelet transform (DWT) method. The SPA method performed somewhat better, principally because it required less spectral features for its pretreatment model. Thus, NIR or MIR matrix as well as the combined NIR/MIR one, were pretreated by the SPA method, and then analysed by LDA. This approach enabled the prediction and classification of the IVHF, ILACS and mixed samples. The MIR spectral data produced somewhat better classification rates than the NIR data. However, the best results were obtained from the combined NIR/MIR data matrix with 95–100% correct classifications for calibration, validation and prediction. Principal component analysis (PCA) of the three types of spectral data supported the results obtained with the LDA classification method.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An intrinsic exposed core optical fiber sensor (IECOFS) made from fused silica was used to monitor the crystallization of calcium carbonate (CaCO3) and CaCO3/calcium sulfate (CaSO4) composite at 100 and 120 °C in the absence and presence of low-molar-mass (Mn ≤ 2000) poly(acrylic acid) (PAA) with different end groups. The IECOFS responded only to deposition and growth processes on the fiber surface rather than changes occurring in the bulk of the solution. Hexyl isobutyrate-terminated PAA (Mn = 1400) and hexadecyl isobutyrate-terminated PAA (Mn = 1700) were the most effective species in preventing CaCO3 deposition. Phase transformation from vaterite to aragonite/calcite decreased with increasing hydrophobicity of the PAA end group. Low-molar-mass PAA at 10 ppm showed very significant inhibition of CaCO3/CaSO4 composite formation for all end groups investigated.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Within online learning communities, receiving timely and meaningful insights into the quality of learning activities is an important part of an effective educational experience. Commonly adopted methods – such as the Community of Inquiry framework – rely on manual coding of online discussion transcripts, which is a costly and time consuming process. There are several efforts underway to enable the automated classification of online discussion messages using supervised machine learning, which would enable the real-time analysis of interactions occurring within online learning communities. This paper investigates the importance of incorporating features that utilise the structure of on-line discussions for the classification of "cognitive presence" – the central dimension of the Community of Inquiry framework focusing on the quality of students' critical thinking within online learning communities. We implemented a Conditional Random Field classification solution, which incorporates structural features that may be useful in increasing classification performance over other implementations. Our approach leads to an improvement in classification accuracy of 5.8% over current existing techniques when tested on the same dataset, with a precision and recall of 0.630 and 0.504 respectively.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Avian species richness surveys, which measure the total number of unique avian species, can be conducted via remote acoustic sensors. An immense quantity of data can be collected, which, although rich in useful information, places a great workload on the scientists who manually inspect the audio. To deal with this big data problem, we calculated acoustic indices from audio data at a one-minute resolution and used them to classify one-minute recordings into five classes. By filtering out the non-avian minutes, we can reduce the amount of data by about 50% and improve the efficiency of determining avian species richness. The experimental results show that, given 60 one-minute samples, our approach enables to direct ecologists to find about 10% more avian species.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Frog species have been declining worldwide at unprecedented rates in the past decades. There are many reasons for this decline including pollution, habitat loss, and invasive species [1]. To preserve, protect, and restore frog biodiversity, it is important to monitor and assess frog species. In this paper, a novel method using image processing techniques for analyzing Australian frog vocalisations is proposed. An FFT is applied to audio data to produce a spectrogram. Then, acoustic events are detected and isolated into corresponding segments through image processing techniques applied to the spectrogram. For each segment, spectral peak tracks are extracted with selected seeds and a region growing technique is utilised to obtain the contour of each frog vocalisation. Based on spectral peak tracks and the contour of each frog vocalisation, six feature sets are extracted. Principal component analysis reduces each feature set down to six principal components which are tested for classification performance with a k-nearest neighbor classifier. This experiment tests the proposed method of classification on fourteen frog species which are geographically well distributed throughout Queensland, Australia. The experimental results show that the best average classification accuracy for the fourteen frog species can be up to 87%.