907 resultados para Old age and Animation
Resumo:
The Age and Growth Program at the Alaska Fisheries Science Center is tasked with providing age data in order to improve the basic understanding of the ecology and fisheries dynamics of Alaskan fish species. The primary focus of the Age and Growth Program is to estimate ages from otoliths and other calcified structures for age-structured modeling of commercially exploited stocks; however, the program has recently expanded its interests to include numerous studies on topics ranging from age estimate validation to the growth and life history of non-target species. Because so many applications rely upon age data and particularly upon assurances as to their accuracy and precision, the Age and Growth Program has developed this practical guide to document the age determination of key groundfish species from Alaskan waters. The main objective of this manual is to describe techniques specific to the age determination of commercially and ecologically important species studied by the Age and Growth Program. The manual also provides general background information on otolith morphology, dissection, and preparation, as well as descriptions of methods used to measure precision and accuracy of age estimates. This manual is intended not only as a reference for age readers at the AFSC and other laboratories, but also to give insight into the quality of age estimates to scientists who routinely use such data.
Resumo:
Age and growth of sailfish (Istiophorus platypterus) in waters off eastern Taiwan were examined from counts of growth rings on cross sections of the fourth spine of the first dorsal fin. Length and weight data and the dorsal fin spines were collected monthly at the fishing port of Shinkang (southeast of Taiwan) from July 1998 to August 1999. In total, 1166 dorsal fins were collected, of which 1135 (97%) (699 males and 436 females) were aged successfully. Trends in the monthly mean marginal increment ratio indicated that growth rings are formed once a year. Two methods were used to back-calculate the length of presumed ages, and growth was described by using the standard von Bertalanffy growth function and the Richards function. The most reasonable and conservative description of growth assumes that length-at-age follows the Richards function and that the relationship between spine radius and lower jaw fork length (LJFL) follows a power function. Growth differed significantly between the sexes; females grew faster and reached larger sizes than did males. The maximum sizes in our sample were 232 cm LJFL for female and 221 cm LJFL for male.
Resumo:
Patterns of distribution and growth were examined for young-of-the-year (YOY) greater amberjack (Seriola dumerili) associated with pelagic Sargassum in the NW Gulf of Mexico. Seriola dumerili were collected off Galveston, Texas, from May to July over a two-year period (2000 and 2001) in both inshore (<15 nautical miles [nmi]) and offshore zones (15−70 nmi). Relative abundance of YOY S. dumerili (32−210 mm standard length) from purse-seine collections peaked in May and June, and abundance was highest in the offshore zone. Ages of S. dumerili ranged from 39 to 150 days and hatching-date analysis indicated that the majority of spawning events occurred from February to April. Average daily growth rates of YOY S. dumerili for 2000 and 2001 were 1.65 mm/d and 2.00 mm/d, respectively. Intra-annual differences in growth were observed; the late-season (April) cohort experienced the fastest growth in both years. In addition, growth was significantly higher for S. dumerili collected from the offshore zone. Mortality was approximated by using catch-curve analysis, and the predicted instantaneous mortality rate (Z) of YOY S. dumerili was 0.0045 (0.45%/d).
Resumo:
Teeth of 71 estuarine dolphins (Sotalia guianensis) incidentally caught on the coast of Paraná State, southern Brazil, were used to estimate age. The oldest male and female dolphins were 29 and 30 years, respectively. The mean distance from the neonatal line to the end of the first growth layer group (GLG) was 622.4 ±19.1 μm (n=48). One or two accessory layers were observed between the neonatal line and the end of the first GLG. One of the accessory layers, which was not always present, was located at a mean of 248.9 ±32.6 μm (n=25) from the neonatal line, and its interpretation remains uncertain.The other layer, located at a mean of 419.6 ±44.6 μm (n=54) from the neonatal line, was always present and was first observed between 6.7 and 10.3 months of age. This accessory layer could be a record of weaning in this dolphin. Although no differences in age estimates were observed between teeth sectioned in the anterior-posterior and buccal-lingual planes, we recommend sectioning the teeth in the buccal-lingual plane in order to obtain on-center sections more easily. We also recommend not using teeth from the most anterior part of the mandibles for age estimation. The number of GLGs counted in those teeth was 50% less than the number of GLGs counted in the teeth from the median part of the mandible of the same animal. Although no significant difference (P>0.05) was found between the total lengths of adult male and female estuarine dolphins, we observed that males exhibited a second growth spurt around five years of age. This growth spurt would require that separate growth curves be calculated for the sexes. The asymptotic length (TL∞), k, and t0 obtained by the von Bertalanffy growth model were 177.3 cm, 0.66, and –1.23, respectively, for females and 159.6 cm, 2.02, and –0.38, respectively, for males up to five years, and 186.4 cm, 0.53 and –1.40, respectively, for males older than five years. The total weight (TW)/total length (TL) equations obtained for male and female estuarine dolphins were TW = 3.156 × 10−6 × TL 3.2836 (r=0.96), and TW = 8.974 × 10−5 × TL 2.6182 (r=0.95), respectively.
Resumo:
Age and growth estimates for the winter skate (Leucoraja ocellata) were estimated from vertebral band counts on 209 fish ranging in size from 145 to 940 mm total length (TL). An index of average percent error (IAPE) of 5.8% suggests that our aging method represents a precise approach to the age assessment of L. ocellata. Marginal increments were significantly different between months (Kruskal-Wallis P<0.001) and a distinct trend of increasing monthly increment growth began in July. Estimates of von Bertalanffy growth parameters suggest that females attain a slightly larger asymptotic TL (L∞=1374 mm) than males (L∞=1218 mm) and grow more slowly (k=0.059 and 0.074, respectively). The oldest ages obtained for the winter skate were 19 years for males and 18 years for females, which corresponded to total lengths of 932 mm and 940 mm, respectively. The results indicate that the winter skate exhibits the characteristics that have made other elasmobranch populations highly susceptible to exploitation by commercial fisheries.
Resumo:
Age and growth estimates for the blue shark (Prionace glauca) were derived from 411 vertebral centra and 43 tag-recaptured blue sharks collected in the North Atlantic, ranging in length from 49 to 312 cm fork length (FL). The vertebrae of two oxytetracycline-injected recaptured blue sharks support an annual spring deposition of growth bands in the vertebrae in sharks up to 192 cm FL. Males and females were aged to 16 and 15 years, respectively, and full maturity is attained by 5 years of age in both sexes. Both sexes grew similarly to age seven, when growth rates decreased in males and remained constant in females. Growth rates from tag-recaptured individuals agreed with those derived from vertebral annuli for smaller sharks but appeared overestimated for larger sharks. Von Bertalanffy growth parameters derived from vertebral length-at-age data are L∞ = 282 cm FL, K = 0.18, and t0 = –1.35 for males, and L∞ = 310 cm FL, K = 0.13, and t0 = −1.77 for females. The species grows faster and has a shorter life span than previously reported for these waters.
Resumo:
The bastard grunt (Pomadasys incisus) is one of the most abundant coastal demersal fishes inhabiting the Canary Islands. Age and growth were studied from samples collected between October 2000 and September 2001. Growth analysis revealed that this species is a fast growing and moderately short-lived species (ages up to seven years recorded). Length-at-age was described by the von Bertalanffy growth model (L∞=309.58 mm; k=0.220/year; t0=–1.865 year), the Schnute growth model (y1=126.66 mm; y2=293.50 mm; a=–0.426; b= 5.963), and the seasonalized von Bertalanffy growth model (L∞=309.93 mm; k=0.218/ year; t0= –1.896 year; C=0.555; ts=0.652). Individuals grow quickly in their first year, attaining approximately 60% of their maximum length; after the first year, their growth rate drops rapidly as energy is probably diverted to reproduction. The parameters of the von Bertalanffy weight growth curve were W∞=788.22 mm; k=0.1567/year; t0= –1.984 year. Fish total length and otolith radius were closely correlated, r2=0.912. A power relationship was estimated between the total length and the otolith radius (a=49.93; ν=0.851). A year’s growth was represented by an opaque and hyaline (translucent) zone—an annulus. Backcalculated lengths were similar to those predicted by the growth models. Growth parameters estimated from the backcalculated sizes at age were L∞=315.23 mm; k=0.217/year; and t0= –1.73 year.
Resumo:
Skeletochronological data on growth changes in humerus diameter were used to estimate the age of Hawaiian green seaturtles ranging from 28.7 to 96.0 cm straight carapace length. Two age estimation methods, correction factor and spline integration, were compared, giving age estimates ranging from 4.1 to 34.6 and from 3.3 to 49.4 yr, respectively, for the sample data. Mean growth rates of Hawaiian green seaturtles are 4–5 cm/yr in early juveniles, decline to a relatively constant rate of about 2 cm/yr by age 10 yr, then decline again to less than 1 cm/yr as turtles near age 30 yr. On average, age estimates from the two techniques differed by just a few years for juvenile turtles, but by wider margins for mature turtles. The spline-integration method models the curvilinear relationship between humerus diameter and the width of periosteal growth increments within the humerus, and offers several advantages over the correction-factor approach.
Resumo:
Samples of the commercially and recreationally important West Australian dhufish (Glaucosoma hebraicum) were obtained from the lower west coast of Australia by a variety of methods. Fish <300 mm TL were caught over flat, hard substrata and low-lying limestone reefs, whereas larger fish were caught over larger limestone and coral reef formations. Maximum total lengths, weights, and ages were 981 mm, 15.3 kg, and 39 years, respectively, for females and 1120 mm, 23.2 kg, and 41 years, respectively, for males. The von Bertalanffy growth curves for females and males were significantly different. The values for L∞, k, and t0 in the von Bertalanffy growth equations were 929 mm, 0.111/year, and –0.141 years, respectively, for females, and 1025 mm, 0.111/year, and –0.052 years, respectively, for males. Preliminary estimates of total mortality indicated that G. hebraicum is now subjected to a level of fishing pressure that must be of concern to fishery managers. Glaucosoma hebraicum, which spawns between November and April and predominantly between December and March, breeds at a wide range of depths and is a multiple spawner. The L50’s for females and males at first maturity, i.e. 301 and 320 mm, respectively, were attained by about the end of the third year of life and are well below the minimum legal length (MLL) of 500 mm. Because females and males did not reach the MLL until the end of their seventh and sixth years of life, respectively, they would have had, on average, the opportunity of spawning during four and three spawning seasons, respectively, before they reached the MLL. However, because G. hebraicum caught in water depths >40 m typically die upon release, a MLL is of limited use for conserving this species. Alternative approaches, such as restricting fishing activity in highly fished areas, reducing daily bag limits for recreational fishermen, introducing quotas or revising specific details of certain commercial hand-line licences (or doing both) are more likely to provide effective conservation measures.
Resumo:
Growth parameters were estimated for porbeagle shark (Lamna nasus) in the northwest Atlantic Ocean on the basis of vertebral annuli. A total of 578 vertebrae was analyzed. Annuli were validated up to an age of 11 years by using vertebrae from recaptured oxytetracycline-injected and known-age sharks. Males and females grew at similar rates until the size of male sexual maturity, after which the relative growth of the males declined. The growth rate of the females declined in a similar manner at the onset of maturity. Growth curves were consistent with those derived from tag-recapture analyses (GROTAG) of 76 recaptured fish and those based on length-frequency methods with measurements from 13,589 individuals. Von Bertalanffy growth curve parameters (combined sexes) were L∞ = 289.4 cm fork length, K = 0.07 and t0 = –6.06. Maximum age, based on vertebral band pair counts, was 25 and 24 years for males and females, respectively. Longevity calculations, however, indicated a maximum age of 45 to 46 years in an unfished population.
Resumo:
The northwest Atlantic population of smooth dogfish (Mustelus canis) ranges from Cape Cod, Massachusetts, to South Carolina. Although M. canis is seasonally abundant in this region, very little is known about important aspects of its biology, such as growth and reproductive rates. In the early 1990s, commercial fishery landings of smooth dogfish dramatically increased on the east coast of the United States. This study investigated growth rates of the east coast M. canis population through analysis of growth patterns in vertebral centra. Marginal increment analysis, estimates of precision, and patterns in seasonal growth supported the use of vertebrae to age these sharks. Growth bands in vertebral samples were used to estimate ages for 894 smooth dogfish. Age-length data were used to determine von Bertalanffy growth parameters for this population: K = 0.292/yr, L∞ = 123.57 cm, and t0 = –1.94 years for females, and K = 0.440/yr, L∞ = 105.17 cm, and t0 = –1.52 years for males. Males matured at two or three years of age and females matured between four and seven years of age. The oldest age estimate for male and female samples was ten and sixteen years, respectively.
Resumo:
Age and growth of the swordfish (Xiphias gladius) in Taiwan waters was studied from counts of growth bands on cross sections of the second ray of the first anal fin. Data on lower jaw fork length and weight, and samples of the anal fin of male and female swordfish were collected from three offshore and coastal tuna longline fishing ports on a monthly basis between September 1997 and March 1999. In total, 685 anal fins were collected and 627 of them (293 males and 334 females) were aged successfully. The lower jaw fork lengths of the aged individuals ranged from 83.4 to 246.6 cm for the females and from 83.3 to 206 cm for the males. The radii of the fin rays and growth bands on the cross sections were measured under a dissecting microscope equipped with an image analysis system. Trends in the monthly marginal increment ratio indicated that growth bands formed once a year. Thus, the age of each fish was deter-mined from the number of visible growth bands. Two methods were used to estimate and compare the standard and the generalized von Bertalanffy growth parameters for both males and females. The nonlinear least square estimates of the generalized von Bertalanffy growth parameters in method II, in which a power function was used to describe the relationship between ray radius and LJFL, were recommended as most acceptable. There were significant differences in growth parameters between males and females. The growth parameters estimated for females were the following: asymptotic length (L∞) = 300.66 cm, growth coefficient (K) = 0.040/yr, age at zero length (t0) = –0.75 yr, and the fitted fourth parameter (m) = –0.785. The growth parameters estimated for males were the following: asymptotic length (L∞) = 213.05 cm, growth coefficient (K) = 0.086/yr, age at zero length (t0) = –0.626 yr, and the fitted fourth parameter (m) = –0.768.