878 resultados para Offshore oil well drilling.
Resumo:
IODP Expedition 339 drilled five sites in the Gulf of Cadiz and two off the west Iberian margin (November 2011 to January 2012), and recovered 5.5 km of sediment cores with an average recovery of 86.4%. The Gulf of Cadiz was targeted for drilling as a key location for the investigation of Mediterranean outflow water (MOW) through the Gibraltar Gateway and its influence on global circulation and climate. It is also a prime area for understanding the effects of tectonic activity on evolution of the Gibraltar Gateway and on margin sedimentation. We penetrated into the Miocene at two different sites and established a strong signal of MOW in the sedimentary record of the Gulf of Cadiz, following the opening of the Gibraltar Gateway. Preliminary results show the initiation of contourite deposition at 4.2–4.5 Ma, although subsequent research will establish whether this dates the onset of MOW. The Pliocene succession, penetrated at four sites, shows low bottom current activity linked with a weak MOW. Significant widespread unconformities, present in all sites but with hiatuses of variable duration, are interpreted as a signal of intensified MOW, coupled with flow confinement. The Quaternary succession shows a much more pronounced phase of contourite drift development, with two periods of MOW intensification separated by a widespread unconformity. Following this, the final phase of drift evolution established the contourite depositional system (CDS) architecture we see today. There is a significant climate control on this evolution of MOW and bottom-current activity. However, from the closure of the Atlantic–Mediterranean gateways in Spain and Morocco just over 6 Ma and the opening of the Gibraltar Gateway at 5.3 Ma, there has been an even stronger tectonic control on margin development, downslope sediment transport and contourite drift evolution. The Gulf of Cadiz is the world's premier contourite laboratory and thus presents an ideal testing ground for the contourite paradigm. Further study of these contourites will allow us to resolve outstanding issues related to depositional processes, drift budgets, and recognition of fossil contourites in the ancient record on shore. The expedition also verified an enormous quantity and extensive distribution of contourite sands that are clean and well sorted. These represent a relatively untapped and important exploration target for potential oil and gas reservoirs.
Resumo:
Biodiesel derived from microalgae is one of a suite of potential solutions to meet the increasing demand for a renewable, carbon-neutral energy source. However, there are numerous challenges that must be addressed before algae biodiesel can become commercially viable. These challenges include the economic feasibility of harvesting and dewatering the biomass and the extraction of lipids and their conversion into biodiesel. Therefore, it is essential to find a suitable extraction process given these processes presently contribute significantly to the total production costs which, at this stage, inhibit the ability of biodiesel to compete financially with petroleum diesel. This study focuses on pilot-scale (100 kg dried microalgae) solvent extraction of lipids from microalgae and subsequent transesterification to biodiesel. Three different solvents (hexane, isopropanol (IPA) and hexane + IPA (1:1)) were used with two different extraction methods (static and Soxhlet) at bench-scale to find the most suitable solvent extraction process for the pilot-scale. The Soxhlet method extracted only 4.2% more lipid compared to the static method. However, the fatty acid profiles of different extraction methods with different solvents are similar, suggesting that none of the solvents or extraction processes were biased for extraction of particular fatty acids. Considering the cost and availability of the solvents, hexane was chosen for pilot-scale extraction using static extraction. At pilot-scale the lipid yield was found to be 20.3% of total biomass which is 2.5% less than from bench scale. Extracted fatty acids were dominated by polyunsaturated fatty acids (PUFAs) (68.94±0.17%) including 47.7±0.43 and 17.86±0.42% being docosahexaenoic acid (DHA) (C22:6) and docosapentaenoic acid (DPA) (C22:5, ω-3), respectively. These high amounts of long chain poly unsaturated fatty acids are unique to some marine microalgae and protists and vary with environmental conditions, culture age and nutrient status, as well as with cultivation process. Calculated physical and chemical properties of density, viscosity of transesterified fatty acid methyl esters (FAMEs) were within the limits of the biodiesel standard specifications as per ASTM D6751-2012 and EN 14214. The calculated cetane number was, however, significantly lower (17.8~18.6) compared to ASTM D6751-2012 or EN 14214-specified minimal requirements. We conclude that the obtained microalgal biodiesel would likely only be suitable for blending with petroleum diesel to a maximum of 5 to 20%.
Resumo:
In recent years, the beauty leaf plant (Calophyllum Inophyllum) is being considered as a potential 2nd generation biodiesel source due to high seed oil content, high fruit production rate, simple cultivation and ability to grow in a wide range of climate conditions. However, however, due to the high free fatty acid (FFA) content in this oil, the potential of this biodiesel feedstock is still unrealized, and little research has been undertaken on it. In this study, transesterification of beauty leaf oil to produce biodiesel has been investigated. A two-step biodiesel conversion method consisting of acid catalysed pre-esterification and alkali catalysed transesterification has been utilized. The three main factors that drive the biodiesel (fatty acid methyl ester (FAME)) conversion from vegetable oil (triglycerides) were studied using response surface methodology (RSM) based on a Box-Behnken experimental design. The factors considered in this study were catalyst concentration, methanol to oil molar ratio and reaction temperature. Linear and full quadratic regression models were developed to predict FFA and FAME concentration and to optimize the reaction conditions. The significance of these factors and their interaction in both stages was determined using analysis of variance (ANOVA). The reaction conditions for the largest reduction in FFA concentration for acid catalysed pre-esterification was 30:1 methanol to oil molar ratio, 10% (w/w) sulfuric acid catalyst loading and 75 °C reaction temperature. In the alkali catalysed transesterification process 7.5:1 methanol to oil molar ratio, 1% (w/w) sodium methoxide catalyst loading and 55 °C reaction temperature were found to result in the highest FAME conversion. The good agreement between model outputs and experimental results demonstrated that this methodology may be useful for industrial process optimization for biodiesel production from beauty leaf oil and possibly other industrial processes as well.
Resumo:
The research introduces a promising technique for monitoring the degradation status of oil-paper insulation systems of large power transformers in an online mode and innovative enhancements are also made on the existing offline measurements, which afford more direct understanding of the insulation degradation process. Further, these techniques benefit from a quick measurement owing to the chirp waveform signal application. The techniques are improved and developed on the basis of measuring the impedance response of insulation systems. The feasibility and validity of the techniques was supported by the extensive simulation works as well as experimental investigations.
Resumo:
The aim of this study was to look at the freedom of ordinary people as they construct it. The scope, however, was limited to contemporary Finnish sailors and their freedom discourses. The study belongs to the field of the anthropology of religions, which is part of comparative religion. Worldview, which is one of the key concepts in comparative religion, provided the broader theoretical basis of the study. The data consisted of 92 interviews with Finnish professional seafarers conducted in 1996, 1999, 2000 and 2005, field journals that were written during two periods of fieldwork in 1996 and 1999-2000, and correspondence with some of the seafarers during 1999-2005. The analysis process incorporated new rhetoric and metaphor theory. The thesis is in three parts. The first part discusses the methodological challenges of this type of ethnography, the second an ethnography of modern Finnish shipworld focuses on work, organization, hierarchy and gender, and the third part discusses the freedom concepts of seafarers. It was found that seafarers use two kinds of freedom discourse. The first is in line with the stereotypical Jack Tar, a free-roving sailor who is not bound to land and its mundane routines, and the second views shipworld as freedom from freedom, meaning one is not responsible for one s own actions because one is not free to make a choice. It was also found that seafarers are well aware of the stereotypical images that are attached to their profession: they not only deny them, but also utilize, reflect on and construct them.
Resumo:
The fatty acid composition of ground nuts (Arachis hypogaea L.) commonly known as peanuts, is an important consideration when a new variety is being released. The composition impacts on nutrition and, importantly, self-life of peanut products. To select for suitable breeding material, it was necessary to develop a rapid, non-derstructive and cost-efficient method. Near infrared spectroscopy was chosen as that methodology. Calibrations were developed for two major fatty-acid components, oleic and linoleic acids and two minor components, palmitic and stearic acids, as well as total oil content. Partial least squares models indicated a high level of precision with a squared multiple correlation coefficient of greater than 0.90 for each constitutent. Standard errors for prediction for oleic, linoleic, palmitic, stearic acids and total oil content were 6.4%, 4.5%, 0.8%, 0.9% and 1.3% respectively. The results demonstrated that reasonable calibrations could be developed to predict oil composition and content of peanuts for a breeding programme.
Resumo:
India is the midst of oil crisis.Many long term solution have been suggested.The question that is being asked is: can something be done immediately? Prof. A.K.N Reddy, who leads the group on the application of science & Techonology to rural area at the Indian Institute of Science has come with simple solutions which appears to well within our present technological capability.
Resumo:
The in vivo pediculicidal effectiveness of 1% and 2% formulations of tea tree (Melaleuca alternifolia) oil (TTO) against sheep chewing lice (Bovicola ovis) was tested in two pen studies. Immersion dipping of sheep shorn two weeks before treatment in both 1% and 2% formulations reduced lice to non detectable levels. No lice were found on any of the treated sheep despite careful inspection of at least 40 fleece partings per animal at 2, 6, 12 and 20 weeks after treatment. In the untreated sheep louse numbers increased from a mean (+/- SE) of 2.4 (+/- 0.7) per 10 cm fleece part at 2 weeks to 12.3 (+/- 4.2) per part at 20 weeks. Treatment of sheep with 6 months wool by jetting (high pressure spraying into the fleece) reduced louse numbers by 94% in comparison to controls at two weeks after treatment with both 1% and 2% TTO formulations. At 6 and 12 weeks after treatment reductions were 94% and 91% respectively with the 1% formulation and 78% and 84% respectively with the 2% formulation. TTO treatment also appeared to reduce wool damage in infested sheep. Laboratory studies indicated that tea tree oil 'stripped' from solution with a progressive reduction in concentration as well as volume as more wool was dipped, indicating that reinforcement of active ingredient would be required to maintain effectiveness when large numbers of sheep are treated. The results of these studies suggest significant potential for the development of ovine lousicides incorporating TTO. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
With an objective to replace a water droplet from a steel surface by oil we study here the impact of injecting a hydrophilic/lipophilic surfactant into the droplet or into the surrounding oil reservoir. Contact angle goniometery, Grazing angle FTIR spectroscopy and Atomic force microscopy are used to record the oil/water interfacial tension, surface energetics of the substrate under the oil and water phases as well as the corresponding physical states of the substrates. Such energetics reflect the rate at which the excess surfactant molecules accumulate at the water/oil interface and desorb into the phases. The molecules diffuse into the substrate from the phases and build up specific molecular configurations which, with the interfacial tension, control the non-equilibrium progress of and the equilibrium status of the contact line. The study shows that the most efficient replacement of water by the surrounding oil happens when a surfactant is sparingly soluble in the supplier oil phase and highly soluble in the recipient water phase.
Resumo:
The low frequency dielectric behavior of castor oil (a vegetable oil) has been analyzed quite exhaustively in the context of its application as impregnant in capacitors. For the sake of completeness and in order to understand the relaxation phenomena in this liquid dielectric, this high frequency dielectric study was undertaken. In order to compare its properties with a liquid dielectric used in similar application and whose high frequency behavior has been quite well analyzed, Arochlor 1476 was studied. It is observed that both liquids have distributed relaxation times. The distribution parameters together with the two distinct relaxation times have been calculated by measuring the average relaxation time. It has been found that the distinct relaxation times thus calculated represent the dielectric behavior quite satisfactorily. The average dipole moments, dipole radii and thermal activation energies for dipole relaxation have also been evaluated.
Resumo:
Accelerated aging experiments have been conducted on a representative oil-pressboard insulation model to investigate the effect of constant and sequential stresses on the PD behavior using a built-in phase resolved partial discharge analyzer. A cycle of the applied voltage starting from the zero of the positive half cycle was divided into 16 equal phase windows (Φ1 to Φ16) and partial discharge (PD) magnitude distribution in each phase was determined. Based on the experimental results, three stages of aging mechanism were identified. Gumbel's extreme value distribution of the largest element was used to model the first stage of aging process. Second and subsequent stages were modeled using two-parameter Weibull distribution. Spearman's non-parametric rank correlation test statistic and Kolmogrov-Smirnov two sample test were used to relate the aging process of each phase with the corresponding process of the full cycle. To bring out clearly the effect of stress level, its duration and test procedure on the distribution parameters and hence of the aging process, non-parametric ANOVA techniques like Kruskal-Wallis and Fisher's LSD multiple comparison tests were used. Results of the analysis show that two phases (Φ13 and Φ14) near the vicinity of the negative voltage peak were found to contribute significantly to the aging process and their aging mechanism also correlated well with that of the corresponding full cycle mechanism. Attempts have been made to relate these results with the published work of other workers
Resumo:
An industrial base oil, a blend of different paraffin fractions, is heated to 130 degrees C (1) in the ambient and (2) for use as a lubricant in a steel pin on a steel disk sliding experiment. The base oil was tested with and without test antioxidants: dimethyl disulfide (DMDS) and alkylated diphenylamine (ADPA). Primary and secondary oxidation products were monitored continuously by FTIR over a 100 h period. In addition, friction and wear of the steel pin were monitored over the same period and the chemical transformation of the pin surface was monitored by XPS. The objective of this work is to observe the catalytic action of the steel components on the oil aging process and the efficacy of the antioxidant to reduce oxidation of oil used in tribology as a lubricant. Possible mechanistic explanations of the aging process as well as its impact on friction and wear are discussed.
Resumo:
A family of soybean oil (SO) based biodegradable cross-linked copolyesters sourced from renewable resources was developed for use as resorbable biomaterials. The polyesters were prepared by a melt condensation of epoxidized soybean oil polyol and sebacic acid with citric acid (CA) as a cross-linker. D-Mannitol (M) was added as an additional reactant to improve mechanical properties. Differential scanning calorimetry revealed that the polyester synthesized using only CA as the cross-linker was semicrystalline and elastomeric at physiological temperature. The polymers were hydrophobic in nature. The water wettability, elongation at break and the degradation rate of the polyesters decreased with increase in M content or curing time. Modeling of release kinetics of dyes showed a diffusion controlled mechanism underlies the observed sustained release from these polymers. The polyesters supported attachment and proliferation of human stem cells and were thus cytocompatible. Porous scaffolds induced osteogenic differentiation of the stern cells suggesting that these polymers are well suited for bone tissue engineering. Thus, this family of polyesters offers a low cost and green alternative as biocompatible, bioresobable polymers for potential use as resorbable biomaterials for tissue engineering and controlled release.
Resumo:
Research and field experience have shown that well-path control is important in many cases, not only to reach the desired coordinates, but also to arrive at the well completion target from the preferred trajectory.
Resumo:
It is now possible to improve the precision of well survey calculations by order of magnitude with numerical approximation.
Although the most precise method of simulating and calculating a wellbore trajectory generally requires more calculation than other, less-accurate methods, the wider use of computers in oil fields now eliminates this as an obstacle.
The results of various calculations show that there is a deviation of more than 10 m among the different methods of calculation for a directional well of 3,000 m.1 Consequently, it is important to improve the precision and reliability of survey calculation-the fundamental, necessary work of quantitatively monitoring and controlling wellbore trajectories.