966 resultados para Object vision


Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper I analyse UK artist Alison Jones’ sonic interventions Portrait of the Artist by Proxy (2008), Voyeurism by Proxy (2008) and Art, Lies and Audio Tapes (2009). In Portrait of the Artist by Proxy, Jones – who, due to deteriorating vision, has not seen her reflection in a mirror in years – asks and trusts participants to audio-describe her own image back to her. In Voyeurism by Proxy, Jones asks participants to audio-describe erotic drawings by Gustav Klimt. In Art, Lies and Audio Tapes, Jones asks participants to audio-describe other artworks, such as W.F. Yeames’ And When Did You Last see Your Father?. In these portraits by proxy, Jones opens her image, and other images, to interpretation. In doing so, Jones draws attention to the way sight is privileged as a mode of access to fixed, fundamental truths in Western culture – a mode assumed to be untainted by filters that skew perception of the object. “In a culture where vision is by far the dominant sense,” Jones says, “and as a visual artist with a visual impairment, I am reliant on audio-description …Inevitably, there are limitations imposed by language, time and the interpreter’s background knowledge of the subject viewed, as well as their personal bias of what is deemed important to impart in their description” . In these works, Jones strips these background knowledges, biases and assumptions bare. She reveals different perceptions, as well as tendencies or censor, edit or exaggerate descriptions. In this paper, I investigate how, by revealing unconscious biases, Jones’ works renders herself and her participants vulnerable to a change of perception. I also examine how Jones’ later editing of the audio-descriptions allows her to show the instabilities of sight, and, in Portrait of the Artist by Proxy, to reclaim authorship of her own image.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We aim to demonstrate unaided visual 3D pose estimation and map reconstruction using both monocular and stereo vision techniques. To date, our work has focused on collecting data from Unmanned Aerial Vehicles, which generates a number of significant issues specific to the application. Such issues include scene reconstruction degeneracy from planar data, poor structure initialisation for monocular schemes and difficult 3D reconstruction due to high feature covariance. Most modern Visual Odometry (VO) and related SLAM systems make use of a number of sensors to inform pose and map generation, including laser range-finders, radar, inertial units and vision [1]. By fusing sensor inputs, the advantages and deficiencies of each sensor type can be handled in an efficient manner. However, many of these sensors are costly and each adds to the complexity of such robotic systems. With continual advances in the abilities, small size, passivity and low cost of visual sensors along with the dense, information rich data that they provide our research focuses on the use of unaided vision to generate pose estimates and maps from robotic platforms. We propose that highly accurate (�5cm) dense 3D reconstructions of large scale environments can be obtained in addition to the localisation of the platform described in other work [2]. Using images taken from cameras, our algorithm simultaneously generates an initial visual odometry estimate and scene reconstruction from visible features, then passes this estimate to a bundle-adjustment routine to optimise the solution. From this optimised scene structure and the original images, we aim to create a detailed, textured reconstruction of the scene. By applying such techniques to a unique airborne scenario, we hope to expose new robotic applications of SLAM techniques. The ability to obtain highly accurate 3D measurements of an environment at a low cost is critical in a number of agricultural and urban monitoring situations. We focus on cameras as such sensors are small, cheap and light-weight and can therefore be deployed in smaller aerial vehicles. This, coupled with the ability of small aerial vehicles to fly near to the ground in a controlled fashion, will assist in increasing the effective resolution of the reconstructed maps.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Segmentation of novel or dynamic objects in a scene, often referred to as background sub- traction or foreground segmentation, is critical for robust high level computer vision applica- tions such as object tracking, object classifca- tion and recognition. However, automatic real- time segmentation for robotics still poses chal- lenges including global illumination changes, shadows, inter-re ections, colour similarity of foreground to background, and cluttered back- grounds. This paper introduces depth cues provided by structure from motion (SFM) for interactive segmentation to alleviate some of these challenges. In this paper, two prevailing interactive segmentation algorithms are com- pared; Lazysnapping [Li et al., 2004] and Grab- cut [Rother et al., 2004], both based on graph- cut optimisation [Boykov and Jolly, 2001]. The algorithms are extended to include depth cues rather than colour only as in the original pa- pers. Results show interactive segmentation based on colour and depth cues enhances the performance of segmentation with a lower er- ror with respect to ground truth.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Construction 2020 is a national initiative undertaken by CRC for Construction Innovation to focus its ongoing leadership of the Australian property and construction industry in applied research and best contribute to the industry's national and international growth and competitiveness. It is the first major report on the long-term outlook for the industry since the late 1990s. The report identifies nine key themes for the future of the property and construction industry. These visions describe the major concerns of the industry and the improved future working environment favoured by its stakeholders. The first and clearest vision, agreed across the industry, is that environmentally sustainable construction the creation of buildings and infrastructure that minimise their impact on the natural environment is an area of huge potential. Here technologies like Construction Innovation's LCADesign can make a big difference. This is a calculator that works out automatically from 3D computer-aided design the environmental costs of materials in a building all at the push of a button. By working with industry, we'd expect to have a comprehensive set of eco-design tools for all stages of the construction life cycle, to minimise energy use, greenhouse and other forms of waste or pollution. Other significant areas of focus in the report include the development of nationally uniform codes of practice, new tools to evaluate design and product performance, comparisons with overseas industries, and a worldwide research network to ensure that Australian technology is at the cutting edge.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Misperception of speed under low-contrast conditions has been identified as a possible contributor to motor vehicle crashes in fog. To test this hypothesis, we investigated the effects of reduced contrast on drivers’ perception and control of speed while driving under real-world conditions. Fourteen participants drove around a 2.85 km closed road course under three visual conditions: clear view and with two levels of reduced contrast created by diffusing filters on the windscreen and side windows. Three dependent measures were obtained, without view of the speedometer, on separate laps around the road course: verbal estimates of speed; adjustment of speed to instructed levels (25 to 70 km h-1); and estimation of minimum stopping distance. The results showed that drivers traveled more slowly under low-contrast conditions. Reduced contrast had little or no effect on either verbal judgments of speed or estimates of minimum stopping distance. Speed adjustments were significantly slower under low-contrast than clear conditions, indicating that, contrary to studies of object motion, drivers perceived themselves to be traveling faster under conditions of reduced contrast. Under real-world driving conditions, drivers’ ability to perceive and control their speed was not adversely affected by large variations in the contrast of their surroundings. These findings suggest that perceptions of self-motion and object motion involve neural processes that are differentially affected by variations in stimulus contrast as encountered in fog.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Previous research has suggested that perceptual-motor difficulties may account for obese children's lower motor competence; however, specific evidence is currently lacking. Therefore, this study examined the effect of altered visual conditions on spatiotemporal and kinematic gait parameters in obese versus normal-weight children. Thirty-two obese and normal-weight children (11.2 ± 1.5 years) walked barefoot on an instrumented walkway at constant self-selected speed during LIGHT and DARK conditions. Three-dimensional motion analysis was performed to calculate spatiotemporal parameters, as well as sagittal trunk segment and lower extremity joint angles at heel-strike and toe-off. Self-selected speed did not significantly differ between groups. In the DARK condition, all participants walked at a significantly slower speed, decreased stride length, and increased stride width. Without normal vision, obese children had a more pronounced increase in relative double support time compared to the normal-weight group, resulting in a significantly greater percentage of the gait cycle spent in stance. Walking in the DARK, both groups showed greater forward tilt of the trunk and restricted hip movement. All participants had increased knee flexion at heel-strike, as well as decreased knee extension and ankle plantarflexion at toe-off in the DARK condition. The removal of normal vision affected obese children's temporal gait pattern to a larger extent than that of normal-weight peers. Results suggest an increased dependency on vision in obese children to control locomotion. Next to the mechanical problem of moving excess mass, a different coupling between perception and action appears to be governing obese children's motor coordination and control.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

With the emergence of multi-core processors into the mainstream, parallel programming is no longer the specialized domain it once was. There is a growing need for systems to allow programmers to more easily reason about data dependencies and inherent parallelism in general purpose programs. Many of these programs are written in popular imperative programming languages like Java and C]. In this thesis I present a system for reasoning about side-effects of evaluation in an abstract and composable manner that is suitable for use by both programmers and automated tools such as compilers. The goal of developing such a system is to both facilitate the automatic exploitation of the inherent parallelism present in imperative programs and to allow programmers to reason about dependencies which may be limiting the parallelism available for exploitation in their applications. Previous work on languages and type systems for parallel computing has tended to focus on providing the programmer with tools to facilitate the manual parallelization of programs; programmers must decide when and where it is safe to employ parallelism without the assistance of the compiler or other automated tools. None of the existing systems combine abstraction and composition with parallelization and correctness checking to produce a framework which helps both programmers and automated tools to reason about inherent parallelism. In this work I present a system for abstractly reasoning about side-effects and data dependencies in modern, imperative, object-oriented languages using a type and effect system based on ideas from Ownership Types. I have developed sufficient conditions for the safe, automated detection and exploitation of a number task, data and loop parallelism patterns in terms of ownership relationships. To validate my work, I have applied my ideas to the C] version 3.0 language to produce a language extension called Zal. I have implemented a compiler for the Zal language as an extension of the GPC] research compiler as a proof of concept of my system. I have used it to parallelize a number of real-world applications to demonstrate the feasibility of my proposed approach. In addition to this empirical validation, I present an argument for the correctness of the type system and language semantics I have proposed as well as sketches of proofs for the correctness of the sufficient conditions for parallelization proposed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper proposes a semi-supervised intelligent visual surveillance system to exploit the information from multi-camera networks for the monitoring of people and vehicles. Modules are proposed to perform critical surveillance tasks including: the management and calibration of cameras within a multi-camera network; tracking of objects across multiple views; recognition of people utilising biometrics and in particular soft-biometrics; the monitoring of crowds; and activity recognition. Recent advances in these computer vision modules and capability gaps in surveillance technology are also highlighted.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The use of appropriate features to represent an output class or object is critical for all classification problems. In this paper, we propose a biologically inspired object descriptor to represent the spectral-texture patterns of image-objects. The proposed feature descriptor is generated from the pulse spectral frequencies (PSF) of a pulse coupled neural network (PCNN), which is invariant to rotation, translation and small scale changes. The proposed method is first evaluated in a rotation and scale invariant texture classification using USC-SIPI texture database. It is further evaluated in an application of vegetation species classification in power line corridor monitoring using airborne multi-spectral aerial imagery. The results from the two experiments demonstrate that the PSF feature is effective to represent spectral-texture patterns of objects and it shows better results than classic color histogram and texture features.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Understanding the motion characteristics of on-site objects is desirable for the analysis of construction work zones, especially in problems related to safety and productivity studies. This article presents a methodology for rapid object identification and tracking. The proposed methodology contains algorithms for spatial modeling and image matching. A high-frame-rate range sensor was utilized for spatial data acquisition. The experimental results indicated that an occupancy grid spatial modeling algorithm could quickly build a suitable work zone model from the acquired data. The results also showed that an image matching algorithm is able to find the most similar object from a model database and from spatial models obtained from previous scans. It is then possible to use the matched information to successfully identify and track objects.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

On obstacle-cluttered construction sites, understanding the motion characteristics of objects is important for anticipating collisions and preventing accidents. This study investigates algorithms for object identification applications that can be used by heavy equipment operators to effectively monitor congested local environment. The proposed framework contains algorithms for three-dimensional spatial modeling and image matching that are based on 3D images scanned by a high-frame rate range sensor. The preliminary results show that an occupancy grid spatial modeling algorithm can successfully build the most pertinent spatial information, and that an image matching algorithm is best able to identify which objects are in the scanned scene.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present a hierarchical model for assessing an object-oriented program's security. Security is quantified using structural properties of the program code to identify the ways in which `classified' data values may be transferred between objects. The model begins with a set of low-level security metrics based on traditional design characteristics of object-oriented classes, such as data encapsulation, cohesion and coupling. These metrics are then used to characterise higher-level properties concerning the overall readability and writability of classified data throughout the program. In turn, these metrics are then mapped to well-known security design principles such as `assigning the least privilege' and `reducing the size of the attack surface'. Finally, the entire program's security is summarised as a single security index value. These metrics allow different versions of the same program, or different programs intended to perform the same task, to be compared for their relative security at a number of different abstraction levels. The model is validated via an experiment involving five open source Java programs, using a static analysis tool we have developed to automatically extract the security metrics from compiled Java bytecode.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Different from conventional methods for structural reliability evaluation, such as, first/second-order reliability methods (FORM/SORM) or Monte Carlo simulation based on corresponding limit state functions, a novel approach based on dynamic objective oriented Bayesian network (DOOBN) for prediction of structural reliability of a steel bridge element has been proposed in this paper. The DOOBN approach can effectively model the deterioration processes of a steel bridge element and predict their structural reliability over time. This approach is also able to achieve Bayesian updating with observed information from measurements, monitoring and visual inspection. Moreover, the computational capacity embedded in the approach can be used to facilitate integrated management and maintenance optimization in a bridge system. A steel bridge girder is used to validate the proposed approach. The predicted results are compared with those evaluated by FORM method.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Visual recording devices such as video cameras, CCTVs, or webcams have been broadly used to facilitate work progress or safety monitoring on construction sites. Without human intervention, however, both real-time reasoning about captured scenes and interpretation of recorded images are challenging tasks. This article presents an exploratory method for automated object identification using standard video cameras on construction sites. The proposed method supports real-time detection and classification of mobile heavy equipment and workers. The background subtraction algorithm extracts motion pixels from an image sequence, the pixels are then grouped into regions to represent moving objects, and finally the regions are identified as a certain object using classifiers. For evaluating the method, the formulated computer-aided process was implemented on actual construction sites, and promising results were obtained. This article is expected to contribute to future applications of automated monitoring systems of work zone safety or productivity.