975 resultados para OXY-FUEL COMBUSTION
Resumo:
El agotamiento, la ausencia o, simplemente, la incertidumbre sobre la cantidad de las reservas de combustibles fósiles se añaden a la variabilidad de los precios y a la creciente inestabilidad en la cadena de aprovisionamiento para crear fuertes incentivos para el desarrollo de fuentes y vectores energéticos alternativos. El atractivo de hidrógeno como vector energético es muy alto en un contexto que abarca, además, fuertes inquietudes por parte de la población sobre la contaminación y las emisiones de gases de efecto invernadero. Debido a su excelente impacto ambiental, la aceptación pública del nuevo vector energético dependería, a priori, del control de los riesgos asociados su manipulación y almacenamiento. Entre estos, la existencia de un innegable riesgo de explosión aparece como el principal inconveniente de este combustible alternativo. Esta tesis investiga la modelización numérica de explosiones en grandes volúmenes, centrándose en la simulación de la combustión turbulenta en grandes dominios de cálculo en los que la resolución que es alcanzable está fuertemente limitada. En la introducción, se aborda una descripción general de los procesos de explosión. Se concluye que las restricciones en la resolución de los cálculos hacen necesario el modelado de los procesos de turbulencia y de combustión. Posteriormente, se realiza una revisión crítica de las metodologías disponibles tanto para turbulencia como para combustión, que se lleva a cabo señalando las fortalezas, deficiencias e idoneidad de cada una de las metodologías. Como conclusión de esta investigación, se obtiene que la única estrategia viable para el modelado de la combustión, teniendo en cuenta las limitaciones existentes, es la utilización de una expresión que describa la velocidad de combustión turbulenta en función de distintos parámetros. Este tipo de modelos se denominan Modelos de velocidad de llama turbulenta y permiten cerrar una ecuación de balance para la variable de progreso de combustión. Como conclusión también se ha obtenido, que la solución más adecuada para la simulación de la turbulencia es la utilización de diferentes metodologías para la simulación de la turbulencia, LES o RANS, en función de la geometría y de las restricciones en la resolución de cada problema particular. Sobre la base de estos hallazgos, el crea de un modelo de combustión en el marco de los modelos de velocidad de la llama turbulenta. La metodología propuesta es capaz de superar las deficiencias existentes en los modelos disponibles para aquellos problemas en los que se precisa realizar cálculos con una resolución moderada o baja. Particularmente, el modelo utiliza un algoritmo heurístico para impedir el crecimiento del espesor de la llama, una deficiencia que lastraba el célebre modelo de Zimont. Bajo este enfoque, el énfasis del análisis se centra en la determinación de la velocidad de combustión, tanto laminar como turbulenta. La velocidad de combustión laminar se determina a través de una nueva formulación capaz de tener en cuenta la influencia simultánea en la velocidad de combustión laminar de la relación de equivalencia, la temperatura, la presión y la dilución con vapor de agua. La formulación obtenida es válida para un dominio de temperaturas, presiones y dilución con vapor de agua más extenso de cualquiera de las formulaciones previamente disponibles. Por otra parte, el cálculo de la velocidad de combustión turbulenta puede ser abordado mediante el uso de correlaciones que permiten el la determinación de esta magnitud en función de distintos parámetros. Con el objetivo de seleccionar la formulación más adecuada, se ha realizado una comparación entre los resultados obtenidos con diversas expresiones y los resultados obtenidos en los experimentos. Se concluye que la ecuación debida a Schmidt es la más adecuada teniendo en cuenta las condiciones del estudio. A continuación, se analiza la importancia de las inestabilidades de la llama en la propagación de los frentes de combustión. Su relevancia resulta significativa para mezclas pobres en combustible en las que la intensidad de la turbulencia permanece moderada. Estas condiciones son importantes dado que son habituales en los accidentes que ocurren en las centrales nucleares. Por ello, se lleva a cabo la creación de un modelo que permita estimar el efecto de las inestabilidades, y en concreto de la inestabilidad acústica-paramétrica, en la velocidad de propagación de llama. El modelado incluye la derivación matemática de la formulación heurística de Bauwebs et al. para el cálculo de la incremento de la velocidad de combustión debido a las inestabilidades de la llama, así como el análisis de la estabilidad de las llamas con respecto a una perturbación cíclica. Por último, los resultados se combinan para concluir el modelado de la inestabilidad acústica-paramétrica. Tras finalizar esta fase, la investigación se centro en la aplicación del modelo desarrollado en varios problemas de importancia para la seguridad industrial y el posterior análisis de los resultados y la comparación de los mismos con los datos experimentales correspondientes. Concretamente, se abordo la simulación de explosiones en túneles y en contenedores, con y sin gradiente de concentración y ventilación. Como resultados generales, se logra validar el modelo confirmando su idoneidad para estos problemas. Como última tarea, se ha realizado un analisis en profundidad de la catástrofe de Fukushima-Daiichi. El objetivo del análisis es determinar la cantidad de hidrógeno que explotó en el reactor número uno, en contraste con los otros estudios sobre el tema que se han centrado en la determinación de la cantidad de hidrógeno generado durante el accidente. Como resultado de la investigación, se determinó que la cantidad más probable de hidrogeno que fue consumida durante la explosión fue de 130 kg. Es un hecho notable el que la combustión de una relativamente pequeña cantidad de hidrogeno pueda causar un daño tan significativo. Esta es una muestra de la importancia de este tipo de investigaciones. Las ramas de la industria para las que el modelo desarrollado será de interés abarca la totalidad de la futura economía de hidrógeno (pilas de combustible, vehículos, almacenamiento energético, etc) con un impacto especial en los sectores del transporte y la energía nuclear, tanto para las tecnologías de fisión y fusión. ABSTRACT The exhaustion, absolute absence or simply the uncertainty on the amount of the reserves of fossil fuels sources added to the variability of their prices and the increasing instability and difficulties on the supply chain are strong incentives for the development of alternative energy sources and carriers. The attractiveness of hydrogen in a context that additionally comprehends concerns on pollution and emissions is very high. Due to its excellent environmental impact, the public acceptance of the new energetic vector will depend on the risk associated to its handling and storage. Fromthese, the danger of a severe explosion appears as the major drawback of this alternative fuel. This thesis investigates the numerical modeling of large scale explosions, focusing on the simulation of turbulent combustion in large domains where the resolution achievable is forcefully limited. In the introduction, a general description of explosion process is undertaken. It is concluded that the restrictions of resolution makes necessary the modeling of the turbulence and combustion processes. Subsequently, a critical review of the available methodologies for both turbulence and combustion is carried out pointing out their strengths and deficiencies. As a conclusion of this investigation, it appears clear that the only viable methodology for combustion modeling is the utilization of an expression for the turbulent burning velocity to close a balance equation for the combustion progress variable, a model of the Turbulent flame velocity kind. Also, that depending on the particular resolution restriction of each problem and on its geometry the utilization of different simulation methodologies, LES or RANS, is the most adequate solution for modeling the turbulence. Based on these findings, the candidate undertakes the creation of a combustion model in the framework of turbulent flame speed methodology which is able to overcome the deficiencies of the available ones for low resolution problems. Particularly, the model utilizes a heuristic algorithm to maintain the thickness of the flame brush under control, a serious deficiency of the Zimont model. Under the approach utilized by the candidate, the emphasis of the analysis lays on the accurate determination of the burning velocity, both laminar and turbulent. On one side, the laminar burning velocity is determined through a newly developed correlation which is able to describe the simultaneous influence of the equivalence ratio, temperature, steam dilution and pressure on the laminar burning velocity. The formulation obtained is valid for a larger domain of temperature, steam dilution and pressure than any of the previously available formulations. On the other side, a certain number of turbulent burning velocity correlations are available in the literature. For the selection of the most suitable, they have been compared with experiments and ranked, with the outcome that the formulation due to Schmidt was the most adequate for the conditions studied. Subsequently, the role of the flame instabilities on the development of explosions is assessed. Their significance appears to be of importance for lean mixtures in which the turbulence intensity remains moderate. These are important conditions which are typical for accidents on Nuclear Power Plants. Therefore, the creation of a model to account for the instabilities, and concretely, the acoustic parametric instability is undertaken. This encloses the mathematical derivation of the heuristic formulation of Bauwebs et al. for the calculation of the burning velocity enhancement due to flame instabilities as well as the analysis of the stability of flames with respect to a cyclic velocity perturbation. The results are combined to build a model of the acoustic-parametric instability. The following task in this research has been to apply the model developed to several problems significant for the industrial safety and the subsequent analysis of the results and comparison with the corresponding experimental data was performed. As a part of such task simulations of explosions in a tunnel and explosions in large containers, with and without gradient of concentration and venting have been carried out. As a general outcome, the validation of the model is achieved, confirming its suitability for the problems addressed. As a last and final undertaking, a thorough study of the Fukushima-Daiichi catastrophe has been carried out. The analysis performed aims at the determination of the amount of hydrogen participating on the explosion that happened in the reactor one, in contrast with other analysis centered on the amount of hydrogen generated during the accident. As an outcome of the research, it was determined that the most probable amount of hydrogen exploding during the catastrophe was 130 kg. It is remarkable that the combustion of such a small quantity of material can cause tremendous damage. This is an indication of the importance of these types of investigations. The industrial branches that can benefit from the applications of the model developed in this thesis include the whole future hydrogen economy, as well as nuclear safety both in fusion and fission technology.
Resumo:
Car Fluff samples collected from a shredding plant in Italy were classified based on particle size, and three different size fractions were obtained in this way. A comparison between these size fractions and the original light fluff was made from two different points of view: (i) the properties of each size fraction as a fuel were evaluated and (ii) the pollutants evolved when each size fraction was subjected to combustion were studied. The aim was to establish which size fraction would be the most suitable for the purposes of energy recovery. The light fluff analyzed contained up to 50 wt.% fines (particle size < 20 mm). However, its low calorific value and high emissions of polychlorinated dioxins and furans (PCDD/Fs), generated during combustion, make the fines fraction inappropriate for energy recovery, and therefore, landfilling would be the best option. The 50–100 mm fraction exhibited a high calorific value and low PCDD/F emissions were generated when the sample was combusted, making it the most suitable fraction for use as refuse-derived fuel (RDF). Results obtained suggest that removing fines from the original ASR sample would lead to a material product that is more suitable for use as RDF.
Resumo:
Mechanical treatments such as shredding or extrusion are applied to municipal solid wastes (MSW) to produce refuse-derived fuels (RDF). In this way, a waste fraction (mainly composed by food waste) is removed and the quality of the fuel is improved. In this research, simultaneous thermal analysis (STA) was used to investigate how different mechanical treatments applied to MSW influence the composition and combustion behaviour of fuel blends produced by combining MSW or RDF with wood in different ratios. Shredding and screening resulted in a more efficient mechanical treatment than extrusion to reduce the chlorine content in a fuel, which would improve its quality. This study revealed that when plastics and food waste are combined in the fuel matrix, the thermal decomposition of the fuels are accelerated. The combination of MSW or RDF and woody materials in a fuel blend has a positive impact on its decomposition.
Resumo:
National Highway Traffic Safety Administration, Office of Research and Development, Washington, D.C.
Resumo:
National Highway Traffic Safety Administration, Washington, D.C.
Resumo:
National Highway Traffic Safety Administration, Office of Research and Development, Washington, D.C.
Resumo:
National Highway Traffic Safety Administration, Office of Research and Development, Washington, D.C.
Resumo:
Mode of access: Internet.
Resumo:
"CONF-7906157."
Resumo:
"Project no. 80.172."
Resumo:
Includes index.
Resumo:
Carbon possesses unique electrical and structural properties that make it an ideal material for use in fuel cell construction. In alkaline, phosphoric acid and proton-exchange membrane fuel cells (PEMFCs), carbon is used in fabricating the bipolar plate and the gas-diffusion layer. It can also act as a support for the active metal in the catalyst layer. Various forms of carbon - from graphite and carbon blacks to composite materials - have been chosen for fuel-cell components. The development of carbon nanotubes and the emergence of nanotechnology in recent years has therefore opened up new avenues of matenials development for the low-temperature fuel cells, particularly the hydrogen PEMFC and the direct methanol PEMFC. Carbon nanotubes and aerogels are also being investigated for use as catalyst support, and this could lead to the production of more stable, high activity catalysts, with low platinum loadings (< 0.1 Mg cm(-2)) and therefore low cost. Carbon can also be used as a fuel in high-temperature fuel cells based on solid oxide, alkaline or molten carbonate technology. In the direct carbon fuel cell (DCFC), the energy of combustion of carbon is converted to electrical power with a thermodynamic efficiency close to 100%. The DCFC could therefore help to extend the use of fossil fuels for power generation as society moves towards a more sustainable energy future. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
Carbons with slitlike pores can serve as effective host materials for storage of hythane fuel, a bridge between the petrol combustion and hydrogen fuel cells. We have used grand canonical Monte Carlo simulation for the modeling of the hydrogen and methane mixture storage at 293 K and pressure of methane and hydrogen mixture up to 2 MPa. We have found that these pores serve as efficient vessels for the storage of hythane fuel near ambient temperatures and low pressures. We find that, for carbons having optimized slitlike pores of size H congruent to 7 angstrom ( pore width that can accommodate one adsorbed methane layer), and bulk hydrogen mole fraction >= 0.9, the volumetric stored energy exceeds the 2010 target of 5.4 MJ dm(-3) established by the U. S. FreedomCAR Partnership. At the same condition, the content of hydrogen in slitlike carbon pores is congruent to 7% by energy. Thus, we have obtained the composition corresponding to hythane fuel in carbon nanospaces with greatly enhanced volumetric energy in comparison to the traditional compression method. We proposed the simple system with added extra container filled with pure free/adsorbed methane for adjusting the composition of the desorbed mixture as needed during delivery. Our simulation results indicate that light slit pore carbon nanomaterials with optimized parameters are suitable filling vessels for storage of hythane fuel. The proposed simple system consisting of main vessel with physisorbed hythane fuel, and an extra container filled with pure free/adsorbed methane will be particularly suitable for combustion of hythane fuel in buses and passenger cars near ambient temperatures and low pressures.
Resumo:
The performance of a scramjet combustor with combined normal and tangential injection was experimentally investigated. Experiments were performed on a 500-mm cylindrical scramjet combustor at a freestream Mach number of 4.5, a nozzle supply pressure of 35.8 MPa, and a nozzle supply enthalpy of 5.8 MJ/kg. Hydrogen fuel was injected normally through portholes to promote combustion and tangentially through a slot to reduce viscous drag. A series of fuel injectors were used to vary the proportion of tangential to normal fuel between 45 and 100%. Reductions in the viscous drag of up to 25% were observed with the greatest reductions occurring at the lowest total equivalence ratio tested for each injector. However, the average pressure produced by combustion with combined normal and tangential injection was approximately 50% less than that produced by normal injection alone. An analysis of the change in specific impulse of the scramjet combustor indicated that the best overall performance was produced by 100% normal injection.