949 resultados para ORGANOMETALLIC CATALYSIS
Resumo:
Thermogravimetrically-determined carbon dioxide reactivities of chars formed from New Zealand coals, ranging in rank from lignite to high volatile bituminous, vary from 0.12 to 10.63 mg/h/mg on a dry, ash-free basis. The lowest rank subbituminous coal chars have similar reactivities to the lignite coal chars. Calcium content of the char shows the strongest correlation with reactivity, which increases as the calcium content increases. High calcium per se does not directly imply a high char reactivity. Organically-bound calcium catalyses the conversion of carbon to carbon monoxide in the presence of carbon dioxide, whereas calcium present as discrete minerals in the coal matrix, e.g., calcite, fails to significantly affect reactivity. Catalytic effects of magnesium, iron, sodium and phosphorous are not as obvious, but can be recognised for individual chars. The thermogravimetric technique provides a fast, reliable analysis that is able to distinguish char reactivity differences between coals, which may be due to any of the above effects. Published by Elsevier Science B.V.
Resumo:
The aim of this work is to develop 3-acyl prodrugs of the potent analgesic morphine-6-sulfate (M6S). These are expected to have higher potency and/or exhibit longer duration of analgesic action than the parent compound. M6S and the prodrugs were synthesized, then purified either by recrystallization or by semi-preparative HPLC and the structures confirmed by mass spectrometry, IR spectrophotometry and by detailed 1- and 2-D NMR studies. The lipophilicities of the compounds were assessed by a combination of shake-flask, group contribution and HPLC retention methods. The octanol-buffer partition coefficient could only be obtained directly for 3-heptanoylmorphine-6-sulfate, using the shake-flask method. The partition coefficients (P) for the remaining prodrugs were estimated from known methylene group contributions. A good linear relationship between log P and the HPLC log capacity factors was demonstrated. Hydrolysis of the 3-acetyl prodrug, as a representative of the group, was found to occur relatively slowly in buffers (pH range 6.15-8.01), with a small buffer catalysis contribution. The rates of enzymatic hydrolysis of the 3-acyl group in 10% rat blood and in 10% rat brain homogenate were investigated. The prodrugs followed apparent first order hydrolysis kinetics, with a significantly faster hydrolysis rate found in 10% rat brain homogenate than in 10% rat blood for all compounds. (C) 1998 Elsevier Science B.V. All rights reserved.
Resumo:
Techniques and mechanism of doping controlled amounts of various cations into pillared clays without causing precipitation or damages to the pillared layered structures are reviewed and discussed. Transition metals of great interest in catalysis can be doped in the micropores of pillared clay in ionic forms by a two-step process. The micropore structures and surface nature of pillared clays are altered by the introduced cations, and this results in a significant improvement in adsorption properties of the clays. Adsorption of water, air components and organic vapors on cation-doped pillared clays were studied. The effects of the amount and species of cations on the pore structure and adsorption behavior are discussed. It is demonstrated that the presence of doped Ca2+ ions can effectively aides the control of modification of the pillared clays of large pore openings. Controlled cation doping is a simple and powerful tool for improving the adsorption properties of pillared clay.
Resumo:
A series of Ni catalysts supported on flyash treated by various chemical methods was tested for carbon dioxide reforming of methane. Ni catalyst on the flyash treated with CaO (Ni/Ash-CaO) shows high conversion and stability, being close to those of the well-reported Ni/Al2O3 and Ni/SiO2 catalysts with conversions approaching thermodynamic equilibrium levels.
Resumo:
High-resolution crystal structures are described for seven macrocycles complexed with HIV-1 protease (HIVPR). The macrocycles possess two amides and an aromatic group within 15-17 membered rings designed to replace N- or C-terminal tripeptides from peptidic inhibitors of HIVPR. Appended to each macrocycle is a transition state isostere and either an acyclic peptide, nonpeptide, or another macrocycle. These cyclic analogues are potent inhibitors of HIVPR, and the crystal structures show them to be structural mimics of acyclic peptides, binding in the active site of HIVPR via the same interactions. Each macrocycle is restrained to adopt a P-strand conformation which is preorganized for protease binding. An unusual feature of the binding of C-terminal macrocyclic inhibitors is the interaction between a positively charged secondary amine and a catalytic aspartate of HIVPR. A bicyclic inhibitor binds similarly through its secondary amine that lies between its component N-terminal and C-terminal macrocycles. In contrast, the corresponding tertiary amine of the N-terminal macrocycles does not interact with the catalytic aspartates. The amine-aspartate interaction induces a 1.5 Angstrom N-terminal translation of the inhibitors in the active site and is accompanied by weakened interactions with a water molecule that bridges the ligand to the enzyme, as well as static disorder in enzyme flap residues. This flexibility may facilitate peptide cleavage and product dissociation during catalysis. Proteases [Aba(67,95)]HIVPR and [Lys(7),Ile(33),Aba(67,95)]- HIVPR used in this work were shown to have very similar crystal structures.
Resumo:
Carbon dioxide reforming of methane into syngas over Ni/gamma-Al2O3 catalysts was systematically studied. Effects of reaction parameters on catalytic activity and carbon deposition over Ni/gamma-Al2O3 catalysts were investigated. It is found that reduced NiA1204, metal nickel, and active species of carbon deposited were the active sites for this reaction. Carbon deposition on Ni/gamma Al2O3 varied depending on the nickel loading and reaction temperature and is the major cause of catalyst deactivation. Higher nickel loading produced more coke on the catalysts, resulting in rapid deactivation and plugging of the reactor. At 5 wt % Ni/gamma-Al2O3 catalyst exhibited high activity and much lesser magnitude of deactivation in 140 h. Characterization of carbon deposits on the catalyst surface revealed that there are two kinds of carbon species (oxidized and -C-C-) formed during the reaction and they showed different reactivities toward hydrogenation and oxidation. Kinetic studies showed that the activation energy for CO production in this reaction amounted to 80 kJ/mol and the rate of CO production could be described by a Langmuir-Hinshelwood model.
Resumo:
Catalytic conversion of N2O to N-2 over Cu- and Co-impregnated activated carbon catalysts (Cu/AC and Co/AC) was investigated. Catalytic activity measurements were carried out in a fixed-bed flow reactor at atmospheric pressure. The catalysts were characterized by N-2 adsorption, X-ray diffraction (XRD) and thermogravimetric analysis (TGA). This study aimed to provide insights into the following aspects: the metal dispersion, changes in pore structure, influence of catalyst loading on reaction, and reaction mechanism. Increasing loading of Co or Cu led to decreasing dispersion, but 20 wt % loading was an upper limit for optimal activities in both cases, with too high loading causing sintering of metal. Co exhibited a relatively better dispersion than Cu. Impregnation of metal led to a large decrease in surface area and pore volume, especially for 30 wt % of loading. 20 wt % of loading has proved to be the optimum for both Cu and Co, which shows the highest activity. Both N2O-Co/AC and -Cu/AC reactions are based upon a redox mechanism, but the former is limited by the oxygen transfer from catalysts to carbon, while N2O chemisorption on the surface of Cu catalyst controls the latter. The removal of oxygen from cobalt promotes the activity of Co/AC, but it is beneficial for Cu/AC to keep plenty of oxygen to maintain the intermediate oxidation of copper-Cu1+. The different nature of the two catalysts and their catalytic reaction mechanisms are closely related to their different electronegativities.
Resumo:
A number of carbonaceous adsorbents were prepared by carbonisation at 600 degrees C following acidic oxidation under various conditions. Effects of the chemical nature of the precursor, such as the ratio of aromatic to aliphatic carbons and oxygen content, on the chemical and structural characteristics of the resultant chars were investigated using C-13 NMR and Raman spectroscopy, respectively. The C-13 NMR spectral parameters of the coal samples show that as the severity of oxidation conditions increased, the ratio of aromatic to aliphatic carbons increased. Furthermore, it was also found that the amount of disorganised carbon affects both the pore structure and the adsorption properties of carbonaceous adsorbents. It is demonstrated that higher amount of the disorganised carbon indicates smaller micropore size. (C) 1999 Elsevier Science Ltd. All rights reserved.
Resumo:
Catalytic conversion of N2O to N-2 With potassium catalysts supported on activated carbon (K/AC) was investigated. Potassium proves to be much more active and stable than either copper or cobalt because potassium possesses strong abilities both for N2O chemisorption and oxygen transfer. Potassium redispersion is found to play a critical role in influencing the catalyst stability. A detailed study of the reaction mechanism was conducted based upon three different catalyst loadings. It was found that during temperature-programmed reaction (TPR), the negative oxygen balance at low temperatures (< 50 degrees C) is due to the oxidation of the external surface of potassium oxide particles, while the bulk oxidation accounts for the oxygen accumulation at higher temperatures (below ca. 270 degrees C). N2O is beneficial for the removal of carbon-oxygen complexes because of the formation of CO2 instead of CO and because of its role in making the chemisorption of produced CO2 on potassium oxide particles less stable. A conceptual three-zone model was proposed to clarify the reaction mechanism over K/AC catalysts. CO2 chemisorption at 250 degrees C proves to be an effective measurement of potassium dispersion. (C) 1999 Academic Press.
Resumo:
The macrocyclic cobalt hexaamines [Co(trans-diammac)](3+) and [Co(cis-diammac)](3+) (diammac = 6,13-dimethyl-1,4,8,11-tetraazacyclotetradecane-6,13-diamine) are capable of reducing the overpotential for hydrogen evolution on a mercury cathode in aqueous solution. Protons are reduced in a catalytic process involving reoxidation of the Co-II species to its parent Co-III complex. The cycle is robust at neutral pH with no decomposition of catalyst. The stability of the [Co(trans-diammac)](2+) and [Co(cis-diammac)](2+) complexes depends on the pH of the solution and the coordinating properties of the supporting electrolyte. Electrochemical studies indicate that the adsorbed Co-II complex on the surface of mercury is the active catalyst for the reduction of protons to dihydrogen.
Resumo:
The influences of HCl, HNO3 and HF treatments of carbon on N2O and NO reduction with 20 wt% Cu-loaded activated carbon were studied. The order of activity in both N2O and NO is as follows: Cu20/AC-HNO3>Cu20/AC>Cu20/AC-HF>Cu20/AC-HCl. The same sequence was also observed for the amount of CO2 evolved during TPD experiments of supports acid for the catalyst dispersion. On the other hand, N2O exhibited a higher reaction rate than NO and a higher sensitivity to acid treatments, and the presence of gas-phase O-2 had opposite effects in N2O and NO reduction. The key role of carbon surface chemistry is examined to rationalize these findings and the relevant mechanistic and practical implications are discussed. The effects of oxygen surface groups on the pore structure of supports and catalysts are also analyzed, (C) 2000 Elsevier Science Ltd. All rights reserved.
Resumo:
A series of TiO2 samples with different anatase-to-rutile ratios was prepared by calcination, and the roles of the two crystallite phases of titanium(IV) oxide (TiO2) on the photocatalytic activity in oxidation of phenol in aqueous solution were studied. High dispersion of nanometer-sized anatase in the silica matrix and the possible bonding of Si-O-Ti in SiO2/TiO2 interface were found to stabilize the crystallite transformation from anatase to rutile. The temperature for this transformation was 1200 degrees C for the silica-titania (ST) sample, much higher than 700 degrees C for Degussa P25, a benchmarking photocatalyst. It is shown that samples with higher anatase-to-rutile ratios have higher activities for phenol degradation. However, the activity did not totally disappear after a complete crystallite transformation for P25 samples, indicating some activity of the rutile phase. Furthermore, the activity for the ST samples after calcination decreased significantly, even though the amount of anatase did not change much. The activity of the same samples with different anatase-to-rutile ratios is more related to the amount of the surface-adsorbed water and hydroxyl groups and surface area. The formation of rutile by calcination would reduce the surface-adsorbed water and hydroxyl groups and surface area, leading to the decrease in activity.
Resumo:
A two-step method of loading controlled amounts of transition metal cations into alumina pillared clays (Al-PILCs) is proposed. First, calcined Al-PILC was dispersed into an aqueous solution of sodium or ammonium ions. Increasing the pH of the dispersion resulted in an increase in the amount of cations loaded into the clay. The ion-doped Al-PILC was then exchanged with an aqueous solution of transition metal salt at a pH of similar to 4.5 to replace Na+ or NH4+ ions by transition metal cations. Analytical techniques such as atomic absorption spectroscopy, X-ray diffraction, diffuse reflectance-ultraviolet-visible spectroscopy, as well as N-2 adsorption were used to characterize the PILC products with and without the loading of metal ions. The introduced transition metal species exist in the forms of hydrated ions in the PILC hosts. The content of transition metal ions in the final product increased with the amount of Na+ or NH4+ loaded in the first step so that by controlling the pH of the dispersion in the first step, one can control the doping amounts of transition metal cations into Al-PILCs. A sample containing 0.125 mmol/g of nickel was thus obtained, which is similar to 3 times of that obtained by directly exchanging Al-PILC with Ni(NO3)(2) solution, while the pillared layered structures of the Al-PILC remained. The porosity analysis using N-2 adsorption data indicated that most of the doped transition metal ions dispersed homogeneously in the micropores of the Al-PILC, significantly affecting the micropore structure.
Resumo:
First of all, we would like to clarify that the passive to active transition was determined not by using Solgasmix [1], but by combining thermodynamic equilibrium and mass balance for the oxidation of SiC under pure CO2 and pure CO. The model used in our paper [2]was an extension ofWagner’s model [3], in a similar way as Balat et al. [4] did for the oxidation of SiC in oxygen.
Resumo:
Mesoporous Mobil catalytic materials of number 41 (MCM-41) silica was chemically modified using both inorganic and organic precursors and characterized using the techniques, XRD, XPS, MAS NMR, FTIR, W-Vis, and physical adsorption of nitrogen, hydrocarbons (hexane, benzene, acetone, and methanol) and water vapor. Modification using organic reagents was found to result in a significant loss in porosity and a shape change of surface properties (increased hydrophobicity and decreased acidity). With inorganic modifying reagents, the decrease in porosity was also observed while the surface properties were not significantly altered as reflected by the adsorption isotherms of organics and water vapors. Chemical modifications can greatly improve the hydrothermal stability of MCM-41 material because of the enhanced surface hydrophobicity (with organic modifiers) or increased pore wall thickness (with inorganic modifiers). (C) 2000 Elsevier Science B.V. All rights reserved.