993 resultados para OPTICAL-DETECTION
Resumo:
The goal of my Ph.D. thesis is to enhance the visualization of the peripheral retina using wide-field optical coherence tomography (OCT) in a clinical setting.
OCT has gain widespread adoption in clinical ophthalmology due to its ability to visualize the diseases of the macula and central retina in three-dimensions, however, clinical OCT has a limited field-of-view of 300. There has been increasing interest to obtain high-resolution images outside of this narrow field-of-view, because three-dimensional imaging of the peripheral retina may prove to be important in the early detection of neurodegenerative diseases, such as Alzheimer's and dementia, and the monitoring of known ocular diseases, such as diabetic retinopathy, retinal vein occlusions, and choroid masses.
Before attempting to build a wide-field OCT system, we need to better understand the peripheral optics of the human eye. Shack-Hartmann wavefront sensors are commonly used tools for measuring the optical imperfections of the eye, but their acquisition speed is limited by their underlying camera hardware. The first aim of my thesis research is to create a fast method of ocular wavefront sensing such that we can measure the wavefront aberrations at numerous points across a wide visual field. In order to address aim one, we will develop a sparse Zernike reconstruction technique (SPARZER) that will enable Shack-Hartmann wavefront sensors to use as little as 1/10th of the data that would normally be required for an accurate wavefront reading. If less data needs to be acquired, then we can increase the speed at which wavefronts can be recorded.
For my second aim, we will create a sophisticated optical model that reproduces the measured aberrations of the human eye. If we know how the average eye's optics distort light, then we can engineer ophthalmic imaging systems that preemptively cancel inherent ocular aberrations. This invention will help the retinal imaging community to design systems that are capable of acquiring high resolution images across a wide visual field. The proposed model eye is also of interest to the field of vision science as it aids in the study of how anatomy affects visual performance in the peripheral retina.
Using the optical model from aim two, we will design and reduce to practice a clinical OCT system that is capable of imaging a large (800) field-of-view with enhanced visualization of the peripheral retina. A key aspect of this third and final aim is to make the imaging system compatible with standard clinical practices. To this end, we will incorporate sensorless adaptive optics in order to correct the inter- and intra- patient variability in ophthalmic aberrations. Sensorless adaptive optics will improve both the brightness (signal) and clarity (resolution) of features in the peripheral retina without affecting the size of the imaging system.
The proposed work should not only be a noteworthy contribution to the ophthalmic and engineering communities, but it should strengthen our existing collaborations with the Duke Eye Center by advancing their capability to diagnose pathologies of the peripheral retinal.
Resumo:
The absence of rapid, low cost and highly sensitive biodetection platform has hindered the implementation of next generation cheap and early stage clinical or home based point-of-care diagnostics. Label-free optical biosensing with high sensitivity, throughput, compactness, and low cost, plays an important role to resolve these diagnostic challenges and pushes the detection limit down to single molecule. Optical nanostructures, specifically the resonant waveguide grating (RWG) and nano-ribbon cavity based biodetection are promising in this context. The main element of this dissertation is design, fabrication and characterization of RWG sensors for different spectral regions (e.g. visible, near infrared) for use in label-free optical biosensing and also to explore different RWG parameters to maximize sensitivity and increase detection accuracy. Design and fabrication of the waveguide embedded resonant nano-cavity are also studied. Multi-parametric analyses were done using customized optical simulator to understand the operational principle of these sensors and more important the relationship between the physical design parameters and sensor sensitivities. Silicon nitride (SixNy) is a useful waveguide material because of its wide transparency across the whole infrared, visible and part of UV spectrum, and comparatively higher refractive index than glass substrate. SixNy based RWGs on glass substrate are designed and fabricated applying both electron beam lithography and low cost nano-imprint lithography techniques. A Chromium hard mask aided nano-fabrication technique is developed for making very high aspect ratio optical nano-structure on glass substrate. An aspect ratio of 10 for very narrow (~60 nm wide) grating lines is achieved which is the highest presented so far. The fabricated RWG sensors are characterized for both bulk (183.3 nm/RIU) and surface sensitivity (0.21nm/nm-layer), and then used for successful detection of Immunoglobulin-G (IgG) antibodies and antigen (~1μg/ml) both in buffer and serum. Widely used optical biosensors like surface plasmon resonance and optical microcavities are limited in the separation of bulk response from the surface binding events which is crucial for ultralow biosensing application with thermal or other perturbations. A RWG based dual resonance approach is proposed and verified by controlled experiments for separating the response of bulk and surface sensitivity. The dual resonance approach gives sensitivity ratio of 9.4 whereas the competitive polarization based approach can offer only 2.5. The improved performance of the dual resonance approach would help reducing probability of false reading in precise bio-assay experiments where thermal variations are probable like portable diagnostics.
Resumo:
Tetrodotoxin (TTX) is a low molecular weight and potent marine neurotoxin which is usually present in some species of puffer fish. TTX selectively binds to voltage-sensitive sodium channels (VSGCs), blocking the influx of sodium into the cell and affecting neural transmission. The bioaccumulation of this toxin in seafood can poses a risk to human safety. With the purpose of achieving cheap, specific and reliable tools to determine TTX in puffer fish samples, a self-assembled dithiol-based immunoassay, an electrochemical immunosensor and an optical Surface Plasmon Resonance (SPR) immunosensor are proposed. The immunoassay for TTX based on the use of dithiols self-assembled on maleimide-plates (mELISA) has been able to detect as low as 2.28 μg/L of TTX. The effect of different puffer fish matrixes on this mELISA has been quantified and the corresponding correction factors have been established. This
mELISA has enabled to establish the cross-reactivity factors for four TTX analogues: 5,6,11-trideoxy-TTX, 5,6,11-trideoxy-4-anhydro-TTX, 11-nor-TTX-6-ol and 5,11-deoxy-TTX. The crossreactivity factors have also been established by the optical SPR immunosensor previously reported, which had a limit of detection (LOD) of 4.27 μg/L. The mELISA and the SPR immunosensor have then been tested with spiked-puffer fish matrixes, providing an effective
LOD of 0.23 and 0.43 mg/kg respectively, well below the limit set in Japan (2 mg/kg). The mELISA and the SPR immunosensor have also been applied to the analysis of naturally contaminated puffer fish samples, providing similar TTXs contents between techniques and also compared to LC-MS/MS. The suitability of these immunochemical techniques has been demonstrated not only for screening purposes, but also for research activities. Currently, given that dithiols could improve the electron transfer and the sensitivity of an electrochemical assay, the mELISA strategy is being transferred to gold electrodes for the electrochemical detection of TTX and the subsequent development of the multiplexed electrochemical immunosensor.
Resumo:
Objective
Pedestrian detection under video surveillance systems has always been a hot topic in computer vision research. These systems are widely used in train stations, airports, large commercial plazas, and other public places. However, pedestrian detection remains difficult because of complex backgrounds. Given its development in recent years, the visual attention mechanism has attracted increasing attention in object detection and tracking research, and previous studies have achieved substantial progress and breakthroughs. We propose a novel pedestrian detection method based on the semantic features under the visual attention mechanism.
Method
The proposed semantic feature-based visual attention model is a spatial-temporal model that consists of two parts: the static visual attention model and the motion visual attention model. The static visual attention model in the spatial domain is constructed by combining bottom-up with top-down attention guidance. Based on the characteristics of pedestrians, the bottom-up visual attention model of Itti is improved by intensifying the orientation vectors of elementary visual features to make the visual saliency map suitable for pedestrian detection. In terms of pedestrian attributes, skin color is selected as a semantic feature for pedestrian detection. The regional and Gaussian models are adopted to construct the skin color model. Skin feature-based visual attention guidance is then proposed to complete the top-down process. The bottom-up and top-down visual attentions are linearly combined using the proper weights obtained from experiments to construct the static visual attention model in the spatial domain. The spatial-temporal visual attention model is then constructed via the motion features in the temporal domain. Based on the static visual attention model in the spatial domain, the frame difference method is combined with optical flowing to detect motion vectors. Filtering is applied to process the field of motion vectors. The saliency of motion vectors can be evaluated via motion entropy to make the selected motion feature more suitable for the spatial-temporal visual attention model.
Result
Standard datasets and practical videos are selected for the experiments. The experiments are performed on a MATLAB R2012a platform. The experimental results show that our spatial-temporal visual attention model demonstrates favorable robustness under various scenes, including indoor train station surveillance videos and outdoor scenes with swaying leaves. Our proposed model outperforms the visual attention model of Itti, the graph-based visual saliency model, the phase spectrum of quaternion Fourier transform model, and the motion channel model of Liu in terms of pedestrian detection. The proposed model achieves a 93% accuracy rate on the test video.
Conclusion
This paper proposes a novel pedestrian method based on the visual attention mechanism. A spatial-temporal visual attention model that uses low-level and semantic features is proposed to calculate the saliency map. Based on this model, the pedestrian targets can be detected through focus of attention shifts. The experimental results verify the effectiveness of the proposed attention model for detecting pedestrians.
Resumo:
We present a primary transit observation for the ultra-hot (T eq ~ 2400 K) gas giant expolanet WASP-121b, made using the Hubble Space Telescope Wide Field Camera 3 in spectroscopic mode across the 1.12–1.64 μm wavelength range. The 1.4 μm water absorption band is detected at high confidence (5.4σ) in the planetary atmosphere. We also reanalyze ground-based photometric light curves taken in the B, r', and z' filters. Significantly deeper transits are measured in these optical bandpasses relative to the near-infrared wavelengths. We conclude that scattering by high-altitude haze alone is unlikely to account for this difference and instead interpret it as evidence for titanium oxide and vanadium oxide absorption. Enhanced opacity is also inferred across the 1.12–1.3 μm wavelength range, possibly due to iron hydride absorption. If confirmed, WASP-121b will be the first exoplanet with titanium oxide, vanadium oxide, and iron hydride detected in transmission. The latter are important species in M/L dwarfs and their presence is likely to have a significant effect on the overall physics and chemistry of the atmosphere, including the production of a strong thermal inversion.
Resumo:
Sensitive detection of pathogens is critical to ensure the safety of food supplies and to prevent bacterial disease infection and outbreak at the first onset. While conventional techniques such as cell culture, ELISA, PCR, etc. have been used as the predominant detection workhorses, they are however limited by either time-consuming procedure, complicated sample pre-treatment, expensive analysis and operation, or inability to be implemented at point-of-care testing. Here, we present our recently developed assay exploiting enzyme-induced aggregation of plasmonic gold nanoparticles (AuNPs) for label-free and ultrasensitive detection of bacterial DNA. In the experiments, AuNPs are first functionalized with specific, single-stranded RNA probes so that they exhibit high stability in solution even under high electrolytic condition thus exhibiting red color. When bacterial DNA is present in a sample, a DNA-RNA heteroduplex will be formed and subsequently prone to the RNase H cleavage on the RNA probe, allowing the DNA to liberate and hybridize with another RNA strand. This continuously happens until all of the RNA strands are cleaved, leaving the nanoparticles ‘unprotected’. The addition of NaCl will cause the ‘unprotected’ nanoparticles to aggregate, initiating a colour change from red to blue. The reaction is performed in a multi-well plate format, and the distinct colour signal can be discriminated by naked eye or simple optical spectroscopy. As a result, bacterial DNA as low as pM could be unambiguously detected, suggesting that the enzyme-induced aggregation of AuNPs assay is very easy to perform and sensitive, it will significantly benefit to development of fast and ultrasensitive methods that can be used for disease detection and diagnosis.
Resumo:
We present transmission spectroscopy of the warm Saturn-mass exoplanet WASP-39b made with the Very Large Telescope (VLT) FOcal Reducer and Spectrograph (FORS2) across the wavelength range 411-810nm. The transit depth is measured with a typical precision of 240 parts per million (ppm) in wavelength bins of 10nm on a V = 12.1 magnitude star. We detect the sodium absorption feature (3.2-sigma) and find evidence for potassium. The ground-based transmission spectrum is consistent with Hubble Space Telescope (HST) optical spectroscopy, strengthening the interpretation of WASP-39b having a largely clear atmosphere. Our results demonstrate the great potential of the recently upgraded FORS2 spectrograph for optical transmission spectroscopy, obtaining HST-quality light curves from the ground.
Resumo:
In situ methods used for water quality assessment have both physical and time constraints. Just a limited number of sampling points can be performed due to this, making it difficult to capture the range and variability of coastal processes and constituents. In addition, the mixing between fresh and oceanic water creates complex physical, chemical and biological environment that are difficult to understand, causing the existing measurement methodologies to have significant logistical, technical, and economic challenges and constraints. Remote sensing of ocean colour makes it possible to acquire information on the distribution of chlorophyll and other constituents over large areas of the oceans in short periods. There are many potential applications of ocean colour data. Satellite-derived products are a key data source to study the distribution pattern of organisms and nutrients (Guillaud et al. 2008) and fishery research (Pillai and Nair 2010; Solanki et al. 2001. Also, the study of spatial and temporal variability of phytoplankton blooms, red tide identification or harmful algal blooms monitoring (Sarangi et al. 2001; Sarangi et al. 2004; Sarangi et al. 2005; Bhagirathan et al., 2014), river plume or upwelling assessments (Doxaran et al. 2002; Sravanthi et al. 2013), global productivity analyses (Platt et al. 1988; Sathyendranath et al. 1995; IOCCG2006) and oil spill detection (Maianti et al. 2014). For remote sensing to be accurate in the complex coastal waters, it has to be validated with the in situ measured values. In this thesis an attempt to study, measure and validate the complex waters with the help of satellite data has been done. Monitoring of coastal ecosystem health of Arabian Sea in a synoptic way requires an intense, extensive and continuous monitoring of the water quality indicators. Phytoplankton determined from chl-a concentration, is considered as an indicator of the state of the coastal ecosystems. Currently, satellite sensors provide the most effective means for frequent, synoptic, water-quality observations over large areas and represent a potential tool to effectively assess chl-a concentration over coastal and oceanic waters; however, algorithms designed to estimate chl-a at global scales have been shown to be less accurate in Case 2 waters, due to the presence of water constituents other than phytoplankton which do not co-vary with the phytoplankton. The constituents of Arabian Sea coastal waters are region-specific because of the inherent variability of these optically-active substances affected by factors such as riverine input (e.g. suspended matter type and grain size, CDOM) and phytoplankton composition associated with seasonal changes.
Resumo:
Les convertisseurs de longueur d’onde sont essentiels pour la réalisation de réseaux de communications optiques à routage en longueur d’onde. Dans la littérature, les convertisseurs de longueur d’onde basés sur le mélange à quatre ondes dans les amplificateurs optiques à semi-conducteur constituent une solution extrêmement intéressante, et ce, en raison de leurs nombreuses caractéristiques nécessaires à l’implémentation de tels réseaux de communications. Avec l’émergence des systèmes commerciaux de détection cohérente, ainsi qu’avec les récentes avancées dans le domaine du traitement de signal numérique, il est impératif d’évaluer la performance des convertisseurs de longueur d’onde, et ce, dans le contexte des formats de modulation avancés. Les objectifs de cette thèse sont : 1) d’étudier la faisabilité des convertisseurs de longueur d’onde basés sur le mélange à quatre ondes dans les amplificateurs optiques à semi-conducteur pour les formats de modulation avancés et 2) de proposer une technique basée sur le traitement de signal numérique afin d’améliorer leur performance. En premier lieu, une étude expérimentale de la conversion de longueur d’onde de formats de modulation d’amplitude en quadrature (quadrature amplitude modulation - QAM) est réalisée. En particulier, la conversion de longueur d’onde de signaux 16-QAM à 16 Gbaud et 64-QAM à 5 Gbaud dans un amplificateur optique à semi-conducteur commercial est réalisée sur toute la bande C. Les résultats démontrent qu’en raison des distorsions non-linéaires induites sur le signal converti, le point d’opération optimal du convertisseur de longueur d’onde est différent de celui obtenu lors de la conversion de longueur d’onde de formats de modulation en intensité. En effet, dans le contexte des formats de modulation avancés, c’est le compromis entre la puissance du signal converti et les non-linéarités induites qui détermine le point d’opération optimal du convertisseur de longueur d’onde. Les récepteurs cohérents permettent l’utilisation de techniques de traitement de signal numérique afin de compenser la détérioration du signal transmis suite à sa détection. Afin de mettre à profit les nouvelles possibilités offertes par le traitement de signal numérique, une technique numérique de post-compensation des distorsions induites sur le signal converti, basée sur une analyse petit-signal des équations gouvernant la dynamique du gain à l’intérieur des amplificateurs optiques à semi-conducteur, est développée. L’efficacité de cette technique est démontrée à l’aide de simulations numériques et de mesures expérimentales de conversion de longueur d’onde de signaux 16-QAM à 10 Gbaud et 64-QAM à 5 Gbaud. Cette méthode permet d’améliorer de façon significative les performances du convertisseur de longueur d’onde, et ce, principalement pour les formats de modulation avancés d’ordre supérieur tel que 64-QAM. Finalement, une étude expérimentale exhaustive de la technique de post-compensation des distorsions induites sur le signal converti est effectuée pour des signaux 64-QAM. Les résultats démontrent que, même en présence d’un signal à bruité à l’entrée du convertisseur de longueur d’onde, la technique proposée améliore toujours la qualité du signal reçu. De plus, une étude du point d’opération optimal du convertisseur de longueur d’onde est effectuée et démontre que celui-ci varie en fonction des pertes optiques suivant la conversion de longueur d’onde. Dans un réseau de communication optique à routage en longueur d’onde, le signal est susceptible de passer par plusieurs étages de conversion de longueur d’onde. Pour cette raison, l’efficacité de la technique de post-compensation est démontrée, et ce pour la première fois dans la littérature, pour deux étages successifs de conversion de longueur d’onde de signaux 64-QAM à 5 Gbaud. Les résultats de cette thèse montrent que les convertisseurs de longueur d’ondes basés sur le mélange à quatre ondes dans les amplificateurs optiques à semi-conducteur, utilisés en conjonction avec des techniques de traitement de signal numérique, constituent une technologie extrêmement prometteuse pour les réseaux de communications optiques modernes à routage en longueur d’onde.
Resumo:
Background: Optical Projection Tomography (OPT) is a microscopic technique that generates three dimensional images from whole mount samples the size of which exceeds the maximum focal depth of confocal laser scanning microscopes. As an advancement of conventional emission-OPT, Scanning Laser Optical Tomography (SLOTy) allows simultaneous detection of fluorescence and absorbance with high sensitivity. In the present study, we employ SLOTy in a paradigm of brain plasticity in an insect model system. Methodology: We visualize and quantify volumetric changes in sensory information procession centers in the adult locust, Locusta migratoria. Olfactory receptor neurons, which project from the antenna into the brain, are axotomized by crushing the antennal nerve or ablating the entire antenna. We follow the resulting degeneration and regeneration in the olfactory centers (antennal lobes and mushroom bodies) by measuring their size in reconstructed SLOTy images with respect to the untreated control side. Within three weeks post treatment antennal lobes with ablated antennae lose as much as 60% of their initial volume. In contrast, antennal lobes with crushed antennal nerves initially shrink as well, but regain size back to normal within three weeks. The combined application of transmission-and fluorescence projections of Neurobiotin labeled axotomized fibers confirms that recovery of normal size is restored by regenerated afferents. Remarkably, SLOTy images reveal that degeneration of olfactory receptor axons has a trans-synaptic effect on second order brain centers and leads to size reduction of the mushroom body calyx. Conclusions: This study demonstrates that SLOTy is a suitable method for rapid screening of volumetric plasticity in insect brains and suggests its application also to vertebrate preparations.
Resumo:
This thesis focuses on digital equalization of nonlinear fiber impairments for coherent optical transmission systems. Building from well-known physical models of signal propagation in single-mode optical fibers, novel nonlinear equalization techniques are proposed, numerically assessed and experimentally demonstrated. The structure of the proposed algorithms is strongly driven by the optimization of the performance versus complexity tradeoff, envisioning the near-future practical application in commercial real-time transceivers. The work is initially focused on the mitigation of intra-channel nonlinear impairments relying on the concept of digital backpropagation (DBP) associated with Volterra-based filtering. After a comprehensive analysis of the third-order Volterra kernel, a set of critical simplifications are identified, culminating in the development of reduced complexity nonlinear equalization algorithms formulated both in time and frequency domains. The implementation complexity of the proposed techniques is analytically described in terms of computational effort and processing latency, by determining the number of real multiplications per processed sample and the number of serial multiplications, respectively. The equalization performance is numerically and experimentally assessed through bit error rate (BER) measurements. Finally, the problem of inter-channel nonlinear compensation is addressed within the context of 400 Gb/s (400G) superchannels for long-haul and ultra-long-haul transmission. Different superchannel configurations and nonlinear equalization strategies are experimentally assessed, demonstrating that inter-subcarrier nonlinear equalization can provide an enhanced signal reach while requiring only marginal added complexity.
Resumo:
Gold is one of the most widely used metals for building up plasmonic devices. Although slightly less efficient than silver for producing sharp resonance, its chemical properties make it one of the best choices for designing sensors. Sticking gold on a silicate glass substrate requires an adhesion layer, whose effect has to be taken into account. Traditionally, metals (Cr or Ti) or dielectric materials (TiO2 or Cr2O3 ) are deposited between the glass and the nanoparticle. Recently, indium tin oxide and (3-mercaptopropyl)trimethoxysilane (MPTMS) were used as a new adhesion layer. The aim of this work is to compare these six adhesion layers for surface- enhanced Raman scattering sensors by numerical modeling. The near-field and the far-field optical responses of gold nanocylinders on the different adhesion layers are then calculated. It is shown that MPTMS leads to the highest field enhancement, slightly larger than other dielectric materials. We attributed this effect to the lower refractive index of MPTMS compared with the others.