993 resultados para OLD RATS
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Background: Changes in mineral density in the mandibular and femoral bones (BMD) after estrogen deficiency caused by ovariectomy (OVX) and the influence of these changes on induced periodontal disease were evaluated in female rats.Methods: Forty-eight female Holtzman rats (90 days old) were randomly divided into five groups: 0: control (N = 9); 1: SHAM without induced periodontal disease (N = 11); 2: SHAM with induced disease (N = 10); 3: OVX without induced disease (N = 9); and 4: OVX with induced disease (N = 9). In groups 2 and 4, the first lower molars were tied with ligatures for 30 days 120 days after surgery. After 5 months the animals were sacrificed to measure global mineral density (BMD) and that of the sub-regions of the mandible and femur by dual energy x-ray absorptiometry (DXA). The extent of vertical bone loss was evaluated with digital radiography by measuring the distance from the bone crest to the cemento-enamel junction at the mesial of the first lower molar.Results: Results of the femur (Kruskal-Wallis test) showed a significant difference (P < 0.001) between the groups SHAM and OVX in bone density values for all regions. Comparison between the groups in relation to the BMD of the mandible, both in the sub-regions and global revealed no differences (P < 0.05). The vertical bone loss measured for the groups with induced disease was similar (P= 0.713).Conclusions: Differences between the groups were found in the bone mineral density BMD of the femur but not of the mandible. OVX had no influence on induced periodontal disease.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Bone is a mineralized tissue that is under the influence of several systemic, local and environmental factors. Among systemic factors, estrogen is a hormone well known for its inhibitory function on bone resorption. As alveolar bone of young rats undergoes continuous and intense remodeling to accommodate the growing and erupting tooth, it is a suitable in vivo model for using to study the possible action of estrogen on bone. Thus, in an attempt to investigate the possibility that estrogen may induce the death of osteoclasts, we examined the alveolar bone of estrogen-treated rats.Fifteen, 22-d-old female rats were divided into estrogen, sham and control groups. The estrogen group received estrogen and the sham group received corn oil used as the dilution vehicle. After 8 d, fragments containing alveolar bone were removed and processed for light microscopy and transmission electron microscopy. Sections were stained with hematoxylin and eosin and tartrate-resistant acid phosphatase (TRAP)-an osteoclast marker. Quantitative analysis of the number of TRAP-positive osteoclasts per mm of bone surface was carried out. For detecting apoptosis, sections were analyzed by the Terminal deoxynucleotidyl transferase-mediated dUTP Nick-End Labeling (TUNEL) method; TUNEL/TRAP combined methods were also used.The number of TRAP-positive osteoclasts per mm of bone surface was significantly reduced in the estrogen group compared with the sham and control groups. TRAP-positive osteoclasts exhibiting TUNEL-positive nuclei were observed only in the estrogen group. In addition, in the estrogen group the ultrastructural images revealed shrunken osteoclasts exhibiting nuclei with conspicuous and tortuous masses of condensed chromatin, typical of apoptosis.Our results reinforce the idea that estrogen inhibits bone resorption by promoting a reduction in the number of osteoclasts, thus indicating that this reduction may be, at least in part, a consequence of osteoclast apoptosis.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Previous works from our laboratory have revealed that food restriction (FR) promotes discrete myocardial dysfunction in young rats. We examined the effects of FR on cardiac function, in vivo and in vitro, and ultrastructural changes in the heart of middle-aged rats. Twelve-month-old Wistar- Kyoto rats were fed a control (C) or restricted diet (daily intake reduced to 50% of the control group) for 90 days. Cardiac performance was studied by echocardiogram and in isolated left ventricular (LV) papillary muscle by isometric contraction in basal condition, after calcium chloride (5.2 mM) and beta- adrenergic stimulation with isoproterenol (10(-6) M). FR did not change left ventricular function, but increased time to peak tension, and decreased maximum rate of papillary muscle tension development. Inotropic maneuvers promoted similar effects in both groups. Ultrastructural alterations were seen in most FR rat muscle fibers and included, absence and/or disorganization of myofilaments and Z line, hyper-contracted myofibrils, polymorphic and swollen mitochondria with disorganized cristae, and a great quantity of collagen fibrils. In conclusion, cardiac muscle sensitivity to isoproterenol and elevation of extracellular calcium concentration is preserved in middle-aged FR rats. The intrinsic muscle performance depression might be related to morphological damage.
Resumo:
This study evaluated the effects of exercise training on myocardial function and ultrastructure of rats submitted to different levels of food restriction (FR). Male Wistar-Kyoto rats, 60 days old, were submitted to free access to food, light FR (20%), severe FR (50%) and/or to swimming training (one hour per day with 5% of load, five days per week for 90 days). Myocardial function was evaluated by left ventricular papillary muscle under basal condition (calcium 1.25 mM), and after extracellular calcium elevation to 5.2 mM and isoproterenol (I PM) addition. The ultrastructure of the myocardium was examined in the papillary muscle. The training effectiveness was verified by improvement of myocardial metabolic enzyme activities. Both 20% and 50% food restriction protocols presented minor body and ventricular weights gain. The 20%-FR, in sedentary or trained rats, did not alter myocardial function or ultrastructure. The 50%-FR, in sedentary rats, caused myocardial dysfunction under basal condition, decreased response to inotropic stimulation, and promoted myocardial ultrastructural damage. The 50%-FR, in exercised rats, increased myocardial dysfunction under basal condition but increased response to inotropic stimulation although there was myocardial ultrastructural damage. In conclusion, the exercise training in severe restriction caused marked myocardial dysfunction at basal condition but increased myocardial response to inotropic stimulation. (c) 2005 Elsevier B.V.. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The objective of this work was to evaluate reproductive function in adult male rats exposed to ethanol since puberty. Male Wistar rats, 50 days old, received a liquid diet with 36% of the daily calories derived from ethanol or an isocaloric control diet for 55 days. The ethanol treatment impaired sexual behavior and only 22% of these rats reached ejaculation. The fertility of ethanol-treated animals was significantly reduced, mainly after natural mating. Serum testosterone levels, daily sperm production and sperm count in the epididymis were also significantly diminished after ethanol treatment, associated with an acceleration of the sperm transit time in the cauda epididymidis, decrease in sperm motility and increased percentage of abnormal shaped sperm cells. The results showed that chronic consumption of ethanol beginning at puberty impairs the reproductive function of adult male rats. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
Perinatal Pb exposure may modulate arterial tone through nitric oxide (NO) and cyclooxygenase products. To investigate this, Wistar dams received 1000 ppm of Pb or sodium acetate (control) in drinking water during pregnancy and lactation. Curves were constructed in phenylephrine-precontracted intact and/or denuded rings of thoracic aortas of weaned (23-day-old) male pups from their responses to N-omega-nitro-L-arginine methyl ester (L-NAME, NO synthase inhibitor) and ACh in the absence or presence of indomethacin (10(-5)M, cyclooxygenase inhibitor) or L-NAME (3 x 10(-7)M and 3 x 10(-4)M). Blood lead concentration and systolic blood pressure (SBP) were higher in intoxicated than control pups (blood lead mu g/dl: control < 3.0, Pb 58.7 +/- 6.5*; SBP mmHg: control 111.4 +/- 2.3, Pb 135.5 +/- 2.4*). In L-NAME-treated rings maximal responses increased in Pb-exposed rats, and were higher in intact than in denuded aortas (contraction [% of phenylephrine] intact: control 184.3 +/- 23.7, Pb 289.1 +/- 18.3*; denuded: control 125.1 +/- 4.5, Pb 154.8 +/- 13.3*). ACh-induced relaxation in intact aortas from Pb-exposed rats presented rightward shift in L-NAME presence (EC50 x 10(-7)M: control 1.32 [0.33-5.18], Pb 4.88 [3.56-6.69]*) but moved left under indomethacin (EC50 x 10(-7)M: control 8.95 [3.47-23.07], Pb 0.97 [0.38-2.43]*). *p < 0.05 significant relative to the respective control; N = 7-9. Endothelium removal abolished ACh-induced relaxation. Perinatal Pb exposure caused hypertension associated with alterations in the production and/or release of basal and stimulated endothelium-derived relaxing factors-NO and constricting cyclooxygenase products. These findings may help explain the contribution of NO and cyclooxygenase products to the etiology and/or maintenance of Pb-induced hypertension and could ultimately lead to therapeutic advantages in plumbism.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Physical exercises have been recommended in the prevention of non-insulin dependent diabetes mellitus (NIDDM), but the mechanisms involved in this intervention are not yet fully understood. Experimental models offer the opportunity for the study of this matter. The present study was designed to analyze the diabetes evolution in rats submitted to neonatal treatment with alloxan with the objective of verifying the suitability of the model to future studies with exercises. For this, newly born rats (6 days old) received intraperitoneal alloxan (A = 200 mg/kg of body weight). Rats injected with vehicle (citrate buffer) were used as controls (C). The fasting blood glucose level (mg/dL) was higher in the alloxan group at the day 28 (C=47.25 +/- 5.08; A=54.51 +/- 7.03) but not at the 60 day of age (C=69.18 +/- 8.31; A=66.81 +/- 6.08). The alloxan group presented higher blood glucose level during glucose tolerance test (GTT) (mg/dL. 120 min) in relation to the control group both at day 28 (C=16908.9 +/- 1078.8; A=21737,7 +/- 1106.4) and at day 60 (C=11463.45 +/- 655.30; A=15282.21 +/- 1221.84). Insulinaemia during GTT (ng/mL.120 min) was lower at day 28 (C=158.67 +/- 33.34; A=123.90 +/- 19.80), but presented no difference at day 60 (C=118.83 +/- 26.02; A=97.8 +/- 10.88). At day 60, the glycogen concentration in the soleus muscle (mg/100mg) was lower in the alloxan group (0.3 +/- 0.13) in relation to the control group (0.5 +/- 0.07). No difference was observed between groups in relation to (mu mol/g.h): Glucose Uptake (C = 5.8 +/- 0.63; A = 5.2 +/- 0.73); Glucose Oxidation (C= 4.3 +/- 1.13; A= 3.9 +/- 0.44); Glycogen Synthesis (C= 0.8 +/- 0.18; A= 0.7 +/- 0.18) and Lactate Production (C= 3.8 +/- 0.8; A= 3.8 0.7) by the isolated soleus muscle. The glucose-stimulated insulin secretion (16.7mM) by the isolated islets (ng/5 islets. h) of the alloxan group was lower (14.3 +/- 4.7) than the control group (32.0 +/- 7.9). Thus, we may conclude that this neonatal diabetes induction model gathers interesting characteristics and may be useful for further studies on the role of the exercise in the diabetes mellitus appearance.
Resumo:
Background: An increase in the prevalence of obesity entails great expenditure for governments. Physical exercise is a powerful tool in the combat against obesity and obesity-associated diseases. This study sought to determine the effect of three different exercise protocols on metabolic syndrome and lipid peroxidation markers and the activity of antioxidant enzymes in adult Wistar rats (120 days old).Methods: Animals were randomly divided into four groups: the control (C) group was kept sedentary throughout the study; the aerobic group (A) swam1 h per day, 5 days per week, at 80% lactate threshold intensity; the strength group (S) performed strength training with four series of 10 jumps, 5 days per week; and the Concurrent group (AS) was trained using the aerobic protocol three days per week and the strength protocol two days per week.Results: Groups A and S exhibited a reduction in body weight compared to group C. All exercised animals showed a reduction in triglyceride concentrations in fatty tissues and the liver. Exercised animals also exhibited a reduction in lipid peroxidation markers (TBARS) and an increase in serum superoxide dismutase activity. Animals in group A had increased levels of liver catalase and superoxide dismutase activities.Conclusions: We concluded that all physical activity protocols improved the antioxidant systems of the animals and decreased the storage of triglycerides in the investigated tissues.