977 resultados para OIL POLYURETHANE COMPOSITE


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Additive manufacturing (AM) technology was implemented together with new composite material comprising a synthetic materials, namely, polycaprolactone and bioactive glass with the ultimate aim of the production of an off-the-shelf composite bone scaffold product with superior bone regeneration capacity in a cost effective manner. Our studies indicated that the composite scaffolds have huge potential in promoting bone regeneration. It is our contention that owing to the fruits of such innovative efforts, the field of bone regeneration can metamorphose into a technology platform that allows clinicians worldwide to create tissue-engineered bone with economies of scale in the years to come.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Commercially viable carbon–neutral biodiesel production from microalgae has potential for replacing depleting petroleum diesel. The process of biodiesel production from microalgae involves harvesting, drying and extraction of lipids which are energy- and cost-intensive processes. The development of effective large-scale lipid extraction processes which overcome the complexity of microalgae cell structure is considered one of the most vital requirements for commercial production. Thus the aim of this work was to investigate suitable extraction methods with optimised conditions to progress opportunities for sustainable microalgal biodiesel production. In this study, the green microalgal species consortium, Tarong polyculture was used to investigate lipid extraction with hexane (solvent) under high pressure and variable temperature and biomass moisture conditions using an Accelerated Solvent Extraction (ASE) method. The performance of high pressure solvent extraction was examined over a range of different process and sample conditions (dry biomass to water ratios (DBWRs): 100%, 75%, 50% and 25% and temperatures from 70 to 120 ºC, process time 5–15 min). Maximum total lipid yields were achieved at 50% and 75% sample dryness at temperatures of 90–120 ºC. We show that individual fatty acids (Palmitic acid C16:0; Stearic acid C18:0; Oleic acid C18:1; Linolenic acid C18:3) extraction optima are influenced by temperature and sample dryness, consequently affecting microalgal biodiesel quality parameters. Higher heating values and kinematic viscosity were compliant with biodiesel quality standards under all extraction conditions used. Our results indicate that biodiesel quality can be positively manipulated by selecting process extraction conditions that favour extraction of saturated and mono-unsaturated fatty acids over optimal extraction conditions for polyunsaturated fatty acids, yielding positive effects on cetane number and iodine values. Exceeding biodiesel standards for these two parameters opens blending opportunities with biodiesels that fall outside the minimal cetane and maximal iodine values.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Few would disagree that the upstream oil & gas industry has become more technology-intensive over the years. But how does innovation happen in the industry? Specifically, what ideas and inputs flow from which parts of the sector׳s value network, and where do these inputs go? And how do firms and organizations from different countries contribute differently to this process? This paper puts forward the results of a survey designed to shed light on these questions. Carried out in collaboration with the Society of Petroleum Engineers (SPE), the survey was sent to 469 executives and senior managers who played a significant role with regard to R&D and/or technology deployment in their respective business units. A total of 199 responses were received from a broad range of organizations and countries around the world. Several interesting themes and trends emerge from the results, including: (1) service companies tend to file considerably more patents per innovation than other types of organization; (2) over 63% of the deployed innovations reported in the survey originated in service companies; (3) neither universities nor government-led research organizations were considered to be valuable sources of new information and knowledge in the industry׳s R&D initiatives, and; (4) despite the increasing degree of globalization in the marketplace, the USA still plays an extremely dominant role in the industry׳s overall R&D and technology deployment activities. By providing a detailed and objective snapshot of how innovation happens in the upstream oil & gas sector, this paper provides a valuable foundation for future investigations and discussions aimed at improving how R&D and technology deployment are managed within the industry. The methodology did result in a coverage bias within the survey, however, and the limitations arising from this are explored.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Frequency Domain Spectroscopy (FDS) is successfully being used to assess the insulation condition of oil filled power transformers. However, it has to date only been implemented on de-energized transformers, which requires the transformers to be shut down for an extended period which can result in significant costs. To solve this issue, a method of implementing FDS under energized condition is proposed here. A chirp excitation waveform is used to replace the conventional sinusoidal waveform to reduce the measurement time in this method. Investigation of the dielectric response under the influence of a high voltage stress at power frequency is reported based on experimental results. To further understand the insulation ageing process, the geometric capacitance effect is removed to enhance the detection of the ageing signature. This enhancement enables the imaginary part of admittance to be used as a new indicator to assess the ageing status of the insulation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The upstream oil & gas industry has been contending with massive data sets and monolithic files for many years, but “Big Data”—that is, the ability to apply more sophisticated types of analytical tools to information in a way that extracts new insights or creates new forms of value—is a relatively new concept that has the potential to significantly re-shape the industry. Despite the impressive amount of value that is being realized by Big Data technologies in other parts of the marketplace, however, much of the data collected within the oil & gas sector tends to be discarded, ignored, or analyzed in a very cursory way. This paper examines existing data management practices in the upstream oil & gas industry, and compares them to practices and philosophies that have emerged in organizations that are leading the Big Data revolution. The comparison shows that, in companies that are leading the Big Data revolution, data is regarded as a valuable asset. The presented evidence also shows, however, that this is usually not true within the oil & gas industry insofar as data is frequently regarded there as descriptive information about a physical asset rather than something that is valuable in and of itself. The paper then discusses how upstream oil & gas companies could potentially extract more value from data, and concludes with a series of specific technical and management-related recommendations to this end.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

DNA vaccines or proteins are capable of inducing specific immunity; however, the translation to the clinic has generally been problematic, primarily due to the reduced magnitude of immune response and poor pharmacokinetics. Herein we demonstrate a composite microsphere formulation, composed of mesoporous silica spheres (MPS) and poly(d,l-lactide-co-glycolide) (PLGA), enables the controlled delivery of a prime-boost vaccine via the encapsulation of plasmid DNA (pDNA) and protein in different compartments. Method with modified dual-concentric-feeding needles attached to a 40 kHz ultrasonic atomizer was studied. These needles focus the flow of two different solutions, which passed through the ultrasonic atomizer. The process synthesis parameters, which are important to the scale-up of composite microspheres, were also studied. These parameters include polymer concentration, feed flowrate, and volumetric ratio of polymer and pDNA-PEI/MPS-BSA. This fabrication technique produced composite microspheres with mean D[4,3] ranging from 6 to 34 μm, depending upon the microsphere preparation. The resultant physical morphology of composite microspheres was largely influenced by the volumetric ratio of pDNA-PEI/MPS-BSA to polymer, and this was due to the precipitation of MPS at the surface of the microspheres. The encapsulation efficiencies were predominantly in the range of 93-98% for pDNA and 46-68% for MPS. In the in vitro studies, the pDNA and protein showed different release kinetics in a 40 day time frame. The dual-concentric-feeding in ultrasonic atomization was shown to have excellent reproducibility. It was concluded that this fabrication technique is an effective method to prepare formulations containing a heterologous prime-boost vaccine in a single delivery system.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Infectious diseases such as SARS, influenza and bird flu may spread exponentially throughout communities. In fact, most infectious diseases remain major health risks due to the lack of vaccine or the lack of facilities to deliver the vaccines. Conventional vaccinations are based on damaged pathogens, live attenuated viruses and viral vectors. If the damage was not complete, the vaccination itself may cause adverse effects. Therefore, researchers have been prompted to prepare viable replacements for the attenuated vaccines that would be more effective and safer to use. DNA vaccines are generally composed of a double stranded plasmid that includes a gene encoding the target antigen under the transcriptional directory and control of a promoter region which is active in cells. Plasmid DNA (pDNA) vaccines allow the foreign genes to be expressed transiently in cells, mimicking intracellular pathogenic infection and inducing both humoral and cellular immune responses. Currently, because of their highly evolved and specialized components, viral systems are the most effective means for DNA delivery, and they achieve high efficiencies (generally >90%), for both DNA delivery and expression. As yet, viral-mediated deliveries have several limitations, including toxicity, limited DNA carrying capacity, restricted target to specific cell types, production and packing problems, and high cost. Thus, nonviral systems, particularly a synthetic DNA delivery system, are highly desirable in both research and clinical applications.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The upstream oil and gas industry has been contending with massive data sets and monolithic files for many years, but “Big Data” is a relatively new concept that has the potential to significantly re-shape the industry. Despite the impressive amount of value that is being realized by Big Data technologies in other parts of the marketplace, however, much of the data collected within the oil and gas sector tends to be discarded, ignored, or analyzed in a very cursory way. This viewpoint examines existing data management practices in the upstream oil and gas industry, and compares them to practices and philosophies that have emerged in organizations that are leading the way in Big Data. The comparison shows that, in companies that are widely considered to be leaders in Big Data analytics, data is regarded as a valuable asset—but this is usually not true within the oil and gas industry insofar as data is frequently regarded there as descriptive information about a physical asset rather than something that is valuable in and of itself. The paper then discusses how the industry could potentially extract more value from data, and concludes with a series of policy-related questions to this end.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The research introduces a promising technique for monitoring the degradation status of oil-paper insulation systems of large power transformers in an online mode and innovative enhancements are also made on the existing offline measurements, which afford more direct understanding of the insulation degradation process. Further, these techniques benefit from a quick measurement owing to the chirp waveform signal application. The techniques are improved and developed on the basis of measuring the impedance response of insulation systems. The feasibility and validity of the techniques was supported by the extensive simulation works as well as experimental investigations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A series of macro–mesoporous TiO2/Al2O3 nanocomposites with different morphologies were synthesized. The materials were calcined at 723 K and were characterized by X-ray diffraction (XRD), Scanning electron microscopy (SEM), Transmission electron microscope (TEM), N2 adsorption/desorption, Infrared Emission Spectroscopy (IES), X-ray photoelectron spectroscopy (XPS) and UV–visible spectroscopy (UV–visible). A modified approach was proposed for the synthesis of 1D (fibrous) nanocomposite with higher Ti/Al molar ratio (2:1) at lower temperature (<100 °C), which makes it possible to synthesize such materials on industrial scale. The performance–morphology relationship of as-synthesized TiO2/Al2O3 nanocomposites was investigated by the photocatalytic degradation of a model organic pollutant under UV irradiation. The samples with 1D (fibrous) morphology exhibited superior catalytic performance than the samples without, such as titania microspheres.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Pebble matrix filtration (PMF) is a water treatment technology that can remove suspended solids in highly turbid surface water during heavy storms. PMF typically uses sand and natural pebbles as filter media. Hand-made clay pebbles (balls) can be used as alternatives to natural pebbles in PMF treatment plants, where natural pebbles are not readily available. Since the high turbidity is a seasonal problem that occurs during heavy rains, the use of newly developed composite clay balls instead of pure clay balls have the advantage of removing other pollutants such as natural organic matter (NOM) during other times. Only the strength properties of composite clay balls are described here as the pollutant removal is beyond the scope of this paper. These new composite clay balls must be able to withstand dead and live loads under dry and saturated conditions in a filter assembly. Absence of a standard ball preparation process and expected strength properties of composite clay balls were the main reasons behind the present study. Five different raw materials from industry wastes: Red Mud (RM), Water Treatment Alum Sludge (S), Shredded Paper (SP), Saw Dust (SD), and Sugar Mulch (SM) were added to common clay brick mix (BM) in different proportions. In an effort to minimize costs, in this study clay balls were fired to 1100 0C at a local brick factory together with their bricks. A comprehensive experimental program was performed to evaluate crushing strength of composite hand-made clay balls, using uniaxial compression test to establish the best material combination on the basis of strength properties for designing sustainable filter media for water treatment plants. Performance at both construction and operating stages were considered by analyzing both strength properties under fully dry conditions and strength degradation after saturation in a water bath. The BM-75% as the main component produced optimum combination in terms of workability and strength. With the material combination of BM-75% and additives-25%, the use of Red Mud and water treatment sludge as additives produced the highest and lowest strength of composite clay balls, with a failure load of 5.4 kN and 1.4 kN respectively. However, this lower value of 1.4 kN is much higher than the effective load on each clay ball of 0.04 kN in a typical filter assembly (safety factor of 35), therefore, can still be used as a suitable filter material for enhanced pollutant removal.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A 60-year-old male experienced a marked unilateral myopic shift of 20 D following attempted removal of intravitreal heavy silicone oil (HSO) used in the treatment of inferior proliferative vitreous retinopathy following retinal detachment. Examination revealed HSO adherent to the corneal endothelium forming a convex interface with the aqueous, obscuring the entire pupil, which required surgical intervention to restore visual acuity. This case highlights the potential ocular complications associated with silicone oil migration into the anterior chamber, which include corneal endothelial decompensation and a significant increase in myopia.