403 resultados para Nyquist ghost


Relevância:

10.00% 10.00%

Publicador:

Resumo:

We report for the first time the genetic and biological characterization of 10 HIV-1 primary isolates representing CRF28_BF and CRF29_BF together with additional unique BF recombinant forms (URFs) obtained by PBMC cocultivation. Recombination is an important factor promoting the increase in the genetic diversity of HIV-1. Notably, more than 20% of HIV-1 sequences worldwide were recombinants. Several recombinant viruses were reported in Brazil, and six circulating recombinant forms (CRFs) have been identified (CRF28_BF, CRF29_BF, CRF31_BC, CRF39_BF, CRF40_BF, and CRF46_BF). CRF28_BF and CRF29_BF were found to infect almost 30% of the patients in Sao Paulo State. The near full-length genomes of these 10 primary isolates were amplified by nested PCR in three overlapping segments, purified, and sequenced. Three samples were related to CRF28_BF, three to CRF29_BF, and four were unique recombinant forms (URFs), as determined by their breakpoint profile determined with the jpHMM program. Additionally, the coreceptor usage of these isolates was investigated in vitro using GHOST assays, which revealed three dual-tropic (X4/R5) viruses, four lymphotropic (X4) viruses, and three macrophage-tropic (R5) viruses with different V3-loop motifs, which challenges the notion that GWGR-carrying viruses are macrophage-tropic only. In sum, we report a much-anticipated well-characterized panel of viruses representing CRF28_BF, CRF29_BF, and URFs from Sao Paulo State, Brazil.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Regional odontodysplasia is a rare and significant dental malformation. It is a dental alteration of unknown etiology, involving both mesodermal and ectodermal dental components, which present clinical, radiographic, and histologic features. This article reports a clinical case of a 10-month-old child who was diagnosed with regional odontodysplasia in the maxilla, confirmed by radiographic examination, with a follow-up of 5 years. The clinical, radiographic, and histologic features were reviewed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We present an analytic description of numerical results for the Landau-gauge SU(2) gluon propagator D(p(2)), obtained from lattice simulations (in the scaling region) for the largest lattice sizes to date, in d = 2, 3 and 4 space-time dimensions. Fits to the gluon data in 3d and in 4d show very good agreement with the tree-level prediction of the refined Gribov-Zwanziger (RGZ) framework, supporting a massive behavior for D(p(2)) in the infrared limit. In particular, we investigate the propagator's pole structure and provide estimates of the dynamical mass scales that can be associated with dimension-two condensates in the theory. In the 2d case, fitting the data requires a noninteger power of the momentum p in the numerator of the expression for D(p(2)). In this case, an infinite-volume-limit extrapolation gives D(0) = 0. Our analysis suggests that this result is related to a particular symmetry in the complex-pole structure of the propagator and not to purely imaginary poles, as would be expected in the original Gribov-Zwanziger scenario.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The first part of the thesis concerns the study of inflation in the context of a theory of gravity called "Induced Gravity" in which the gravitational coupling varies in time according to the dynamics of the very same scalar field (the "inflaton") driving inflation, while taking on the value measured today since the end of inflation. Through the analytical and numerical analysis of scalar and tensor cosmological perturbations we show that the model leads to consistent predictions for a broad variety of symmetry-breaking inflaton's potentials, once that a dimensionless parameter entering into the action is properly constrained. We also discuss the average expansion of the Universe after inflation (when the inflaton undergoes coherent oscillations about the minimum of its potential) and determine the effective equation of state. Finally, we analyze the resonant and perturbative decay of the inflaton during (p)reheating. The second part is devoted to the study of a proposal for a quantum theory of gravity dubbed "Horava-Lifshitz (HL) Gravity" which relies on power-counting renormalizability while explicitly breaking Lorentz invariance. We test a pair of variants of the theory ("projectable" and "non-projectable") on a cosmological background and with the inclusion of scalar field matter. By inspecting the quadratic action for the linear scalar cosmological perturbations we determine the actual number of propagating degrees of freedom and realize that the theory, being endowed with less symmetries than General Relativity, does admit an extra gravitational degree of freedom which is potentially unstable. More specifically, we conclude that in the case of projectable HL Gravity the extra mode is either a ghost or a tachyon, whereas in the case of non-projectable HL Gravity the extra mode can be made well-behaved for suitable choices of a pair of free dimensionless parameters and, moreover, turns out to decouple from the low-energy Physics.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In questa tesi abbiamo studiato la quantizzazione di una teoria di gauge di forme differenziali su spazi complessi dotati di una metrica di Kaehler. La particolarità di queste teorie risiede nel fatto che esse presentano invarianze di gauge riducibili, in altre parole non indipendenti tra loro. L'invarianza sotto trasformazioni di gauge rappresenta uno dei pilastri della moderna comprensione del mondo fisico. La caratteristica principale di tali teorie è che non tutte le variabili sono effettivamente presenti nella dinamica e alcune risultano essere ausiliarie. Il motivo per cui si preferisce adottare questo punto di vista è spesso il fatto che tali teorie risultano essere manifestamente covarianti sotto importanti gruppi di simmetria come il gruppo di Lorentz. Uno dei metodi più usati nella quantizzazione delle teorie di campo con simmetrie di gauge, richiede l'introduzione di campi non fisici detti ghosts e di una simmetria globale e fermionica che sostituisce l'iniziale invarianza locale di gauge, la simmetria BRST. Nella presente tesi abbiamo scelto di utilizzare uno dei più moderni formalismi per il trattamento delle teorie di gauge: il formalismo BRST Lagrangiano di Batalin-Vilkovisky. Questo metodo prevede l'introduzione di ghosts per ogni grado di riducibilità delle trasformazioni di gauge e di opportuni “antifields" associati a ogni campo precedentemente introdotto. Questo formalismo ci ha permesso di arrivare direttamente a una completa formulazione in termini di path integral della teoria quantistica delle (p,0)-forme. In particolare esso permette di dedurre correttamente la struttura dei ghost della teoria e la simmetria BRST associata. Per ottenere questa struttura è richiesta necessariamente una procedura di gauge fixing per eliminare completamente l'invarianza sotto trasformazioni di gauge. Tale procedura prevede l'eliminazione degli antifields in favore dei campi originali e dei ghosts e permette di implementare, direttamente nel path integral condizioni di gauge fixing covarianti necessari per definire correttamente i propagatori della teoria. Nell'ultima parte abbiamo presentato un’espansione dell’azione efficace (euclidea) che permette di studiare le divergenze della teoria. In particolare abbiamo calcolato i primi coefficienti di tale espansione (coefficienti di Seeley-DeWitt) tramite la tecnica dell'heat kernel. Questo calcolo ha tenuto conto dell'eventuale accoppiamento a una metrica di background cosi come di un possibile ulteriore accoppiamento alla traccia della connessione associata alla metrica.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This thesis presents several data processing and compression techniques capable of addressing the strict requirements of wireless sensor networks. After introducing a general overview of sensor networks, the energy problem is introduced, dividing the different energy reduction approaches according to the different subsystem they try to optimize. To manage the complexity brought by these techniques, a quick overview of the most common middlewares for WSNs is given, describing in detail SPINE2, a framework for data processing in the node environment. The focus is then shifted on the in-network aggregation techniques, used to reduce data sent by the network nodes trying to prolong the network lifetime as long as possible. Among the several techniques, the most promising approach is the Compressive Sensing (CS). To investigate this technique, a practical implementation of the algorithm is compared against a simpler aggregation scheme, deriving a mixed algorithm able to successfully reduce the power consumption. The analysis moves from compression implemented on single nodes to CS for signal ensembles, trying to exploit the correlations among sensors and nodes to improve compression and reconstruction quality. The two main techniques for signal ensembles, Distributed CS (DCS) and Kronecker CS (KCS), are introduced and compared against a common set of data gathered by real deployments. The best trade-off between reconstruction quality and power consumption is then investigated. The usage of CS is also addressed when the signal of interest is sampled at a Sub-Nyquist rate, evaluating the reconstruction performance. Finally the group sparsity CS (GS-CS) is compared to another well-known technique for reconstruction of signals from an highly sub-sampled version. These two frameworks are compared again against a real data-set and an insightful analysis of the trade-off between reconstruction quality and lifetime is given.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The asymptotic safety scenario allows to define a consistent theory of quantized gravity within the framework of quantum field theory. The central conjecture of this scenario is the existence of a non-Gaussian fixed point of the theory's renormalization group flow, that allows to formulate renormalization conditions that render the theory fully predictive. Investigations of this possibility use an exact functional renormalization group equation as a primary non-perturbative tool. This equation implements Wilsonian renormalization group transformations, and is demonstrated to represent a reformulation of the functional integral approach to quantum field theory.rnAs its main result, this thesis develops an algebraic algorithm which allows to systematically construct the renormalization group flow of gauge theories as well as gravity in arbitrary expansion schemes. In particular, it uses off-diagonal heat kernel techniques to efficiently handle the non-minimal differential operators which appear due to gauge symmetries. The central virtue of the algorithm is that no additional simplifications need to be employed, opening the possibility for more systematic investigations of the emergence of non-perturbative phenomena. As a by-product several novel results on the heat kernel expansion of the Laplace operator acting on general gauge bundles are obtained.rnThe constructed algorithm is used to re-derive the renormalization group flow of gravity in the Einstein-Hilbert truncation, showing the manifest background independence of the results. The well-studied Einstein-Hilbert case is further advanced by taking the effect of a running ghost field renormalization on the gravitational coupling constants into account. A detailed numerical analysis reveals a further stabilization of the found non-Gaussian fixed point.rnFinally, the proposed algorithm is applied to the case of higher derivative gravity including all curvature squared interactions. This establishes an improvement of existing computations, taking the independent running of the Euler topological term into account. Known perturbative results are reproduced in this case from the renormalization group equation, identifying however a unique non-Gaussian fixed point.rn

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The present study is a comparative functional analysis of three factors controlling glial differentiation in mouse (Fyn Src kinase, hnRNPF/H and NG2) and their homologues in Drosophila (Src42A and 64B, Glorund and Kon-tiki (Kon)). In Drosophila, mutations in any of these genes were not associated with major embryonic neurodevelopmental phenotypes. Src kinases and Glorund were shown to be ubiquitously expressed, whereas kon mRNA showed selective expression in muscles as well as in central and peripheral glia. Kon was also shown to be expressed in L3 larvae with high levels of protein accumulation at the neuromuscular junction (NMJ) and in muscles in the form of speckles. Knockdown of kon in glia resulted in NMJ phenotypes, mainly characterized by a significant increase in bouton number and a reduction in α-Konecto staining intensity at the NMJ. From the three glial layers ensheathing the peripheral nervous system, subperineurial glial showed to be the one contributing the most to kon knockdown dependent NMJ phenotypes, while perineurial glia only had a minor role. The knockdown of kon in glia also showed to affect Glutamate receptor subunit (α-GluRIIA) clustering in the postsynapse, same as microtubule arrangement in the presynapse, as seen by α-Futsch pattern interruptions and alterations. kon knockdown in glia also resulted in impaired axonal transport, as seen by the accumulation of Bruchpilot-positive vesicles along the nerves, abnormal formation of neuronal derived protrusions and swellings, filled with vacuole-like structures. Glia number along the peripheral nerves is also reduced as consequence of kon knockdown. Muscle derived Kon was shown to accumulate at the NMJ and play a role in bouton consolidation and to interfere with phagocytosis of ghost boutons. NMJ bouton and branch number was also significantly increased in Kon overexpression in glia. The overexpression of Kon in glia also resulted in a massive elongation of the ventral nerve cord, which served in a suppressor screen to identify intracellular interaction partners of Kon in glia. It was shown that Kon is processed in glia and preliminary results indicate that the metalloendopeptidase Kuzbanian (the fly homologue of ADAM10) may play a role in the shedding of Konecto. In the present work, Kon is shown as a multifunctional gene with various roles in glia-neuron and glia-neuron-muscle interaction.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Il sito archeologico di Suasa è stato oggetto di una lunga campagna di scavi iniziata negli anni sessanta, che ha portato alla pubblicazione di diversi saggi e ha stimolato l’attenzione di numerosi studiosi nel corso degli ultimi anni. Questo interesse, però, rimane un fenomeno ristretto agli addetti al settore e non vede una vera riflessione sul piano turistico. Suasa, infatti, rimane un gioiello culturale scarsamente conosciuto nel territorio ed escluso dai principali percorsi turistici. Il primo obiettivo del nostro intervento è quello di porre l’attenzione su un’area di così grande interesse e avvicinare le persone, esperti di storia e non, all’antica città, in modo che questa possa acquisire una nuova vita e ritrovare una sua valenza nel territorio. Il primo passo in questa direzione è stato quello di mettere in relazione il parco archeologico con gli altri siti archeologici della zona inserendolo in un sistema di offerta culturale volto all’esplorazione e all’approfondimento del territorio marchigiano e della sua storia. La posizione di Suasa sul fiume Cesano, inoltre, risulta particolarmente favorevole ad una integrazione dell’area con i percorsi cicloturistici, in quanto fornisce la possibilità di creare un parco fluviale di supporto a queste nuove tratte di collegamento, così come alle esistenti, andando ad aggiungere valore all’area. Questo elemento risulterà un fattore chiave per la collocazione e la definizione del visitor center del parco archeologico, il quale fa del rapporto tra il sito archeologico e il territorio il suo punto fondante. L’organizzazione del parco richiama quella che era l’organizzazione della città romana, cercando di restituire al visitatore non tanto l’immagine precisa di una ricostruzione, ma la logica e la successione degli spazi che l’impianto urbano poteva assumere. Gli interventi sulle emergenze, quindi, sono realizzati seguendo una coerenza progettuale e materica volta a minimizzare l’impatto sull’archeologia e nel contesto.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Emmanuel Levinas once stated that his “project” was “the deformalization of time.” Jacques Derrida, too, laid out a framework of thinking about time that dismissed the relevance of the past and the future and even belittled the significance of/or ourability to know anything about the “present.” Both of these thinkers discussed such notions of time in the context of complex theories of representation—or of the “relationship” between signifier and signified. This thesis considers the connection between theories of time and conceptions of the “relationship” between signifier andsignified to ask how Hamlet’s role as the agent of the plot in Hamlet relates to his own consideration of his “relationship” to the ghost as a potentially empty signifier.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Panel 5: Memories and Fantasies of Genocides Mark Hobbs, University of Winchester, United Kingdom: "Destroying Memory: The Attack on Holocaust Conscience and Memory in Britain 1942-2011" Download paper (login required) Kristen Dyck, Washington State University: "Hate Rock: White-Power Music in International Perspective" Download paper (login required) Audrey Mallet, Concordia University, Canada: “The Old Jewish Strangler and Other Ghost Stories: Poles’ Struggle to Come to Terms with the Holocaust” Download paper (login required) Tea Rozman-Clark, University of Nova Gorica, Slovenia: “Oral History: UN Peacekeepers and Local Population of the UN Safe Area Srebrenica” Download paper (login required) Chair: Kimberly Partee and Kathrin Haurand, Clark UniversityComment: Cecilie Felicia Stokholm Banke, Danish Institute for International Studies, Copenhagen

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Spectrum sensing is currently one of the most challenging design problems in cognitive radio. A robust spectrum sensing technique is important in allowing implementation of a practical dynamic spectrum access in noisy and interference uncertain environments. In addition, it is desired to minimize the sensing time, while meeting the stringent cognitive radio application requirements. To cope with this challenge, cyclic spectrum sensing techniques have been proposed. However, such techniques require very high sampling rates in the wideband regime and thus are costly in hardware implementation and power consumption. In this thesis the concept of compressed sensing is applied to circumvent this problem by utilizing the sparsity of the two-dimensional cyclic spectrum. Compressive sampling is used to reduce the sampling rate and a recovery method is developed for re- constructing the sparse cyclic spectrum from the compressed samples. The reconstruction solution used, exploits the sparsity structure in the two-dimensional cyclic spectrum do-main which is different from conventional compressed sensing techniques for vector-form sparse signals. The entire wideband cyclic spectrum is reconstructed from sub-Nyquist-rate samples for simultaneous detection of multiple signal sources. After the cyclic spectrum recovery two methods are proposed to make spectral occupancy decisions from the recovered cyclic spectrum: a band-by-band multi-cycle detector which works for all modulation schemes, and a fast and simple thresholding method that works for Binary Phase Shift Keying (BPSK) signals only. In addition a method for recovering the power spectrum of stationary signals is developed as a special case. Simulation results demonstrate that the proposed spectrum sensing algorithms can significantly reduce sampling rate without sacrifcing performance. The robustness of the algorithms to the noise uncertainty of the wireless channel is also shown.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

One of the scarcest resources in the wireless communication system is the limited frequency spectrum. Many wireless communication systems are hindered by the bandwidth limitation and are not able to provide high speed communication. However, Ultra-wideband (UWB) communication promises a high speed communication because of its very wide bandwidth of 7.5GHz (3.1GHz-10.6GHz). The unprecedented bandwidth promises many advantages for the 21st century wireless communication system. However, UWB has many hardware challenges, such as a very high speed sampling rate requirement for analog to digital conversion, channel estimation, and implementation challenges. In this thesis, a new method is proposed using compressed sensing (CS), a mathematical concept of sub-Nyquist rate sampling, to reduce the hardware complexity of the system. The method takes advantage of the unique signal structure of the UWB symbol. Also, a new digital implementation method for CS based UWB is proposed. Lastly, a comparative study is done of the CS-UWB hardware implementation methods. Simulation results show that the application of compressed sensing using the proposed method significantly reduces the number of hardware complexity compared to the conventional method of using compressed sensing based UWB receiver.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Butte-Highland mine is situated at the head of Basin Creek, in the Highland mining district, Silver Bow County, about 14 miles south of Butte. The tunnel portal and present surface plant are at an elevation of about 7350 feet above sea level, facing westward across the head of Basin Creek valley. The "ghost" mining town of Highland lies a mile to the east, near the forks of Fish Creek. Access to the mine is obtained at present from Beaudine's siding, 12 miles west. The property may also be reached, with difficulty, over poor roads from Limekiln hill, or from Moose Creek.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Exposure Fusion and other HDR techniques generate well-exposed images from a bracketed image sequence while reproducing a large dynamic range that far exceeds the dynamic range of a single exposure. Common to all these techniques is the problem that the smallest movements in the captured images generate artefacts (ghosting) that dramatically affect the quality of the final images. This limits the use of HDR and Exposure Fusion techniques because common scenes of interest are usually dynamic. We present a method that adapts Exposure Fusion, as well as standard HDR techniques, to allow for dynamic scene without introducing artefacts. Our method detects clusters of moving pixels within a bracketed exposure sequence with simple binary operations. We show that the proposed technique is able to deal with a large amount of movement in the scene and different movement configurations. The result is a ghost-free and highly detailed exposure fused image at a low computational cost.