927 resultados para Nutrient provisioning
Resumo:
P>1. The hypothesis that nutrient enrichment will affect bryozoan abundance was tested using two complementary investigations; a field-based method determining bryozoan abundance in 20 rivers of different nutrient concentrations by deploying statoblast (dormant propagule) traps and an experimental laboratory microcosm study measuring bryozoan growth and mortality. These two methods confirmed independently that increased nutrient concentrations in water promote increases in the biomass of freshwater bryozoans. 2. Statoblasts of the genus Plumatella were recorded in all rivers, regardless of nutrient concentrations, demonstrating that freshwater bryozoans are widespread. Concentrations of Plumatella statoblasts were high in rivers with high nutrient concentrations relative to those with low to moderate nutrient concentrations. Regression analyses indicated that phosphorus concentrations, in particular, significantly influenced statoblast concentrations. 3. Concentrations of Lophopus crystallinus statoblasts were also higher in sites characterised by high nutrient concentrations. Logistic regression analysis revealed that the presence of L. crystallinus statoblasts was significantly associated with decreasing altitude and increasing phosphorus concentrations. This apparently rare species was found in nine rivers (out of 20), seven of which were new sites for L. crystallinus. 4. Growth rates of Fredericella sultana in laboratory microcosms increased with increasing nutrient concentration and high mortality rates were associated with low nutrient concentrations. 5. Our results indicate that bryozoans respond to increasing nutrient concentrations by increased growth, resulting in higher biomasses in enriched waters. We also found that an important component of bryozoan diets can derive from food items lacking chlorophyll a. Finally, bryozoans may be used as independent proxies for inferring trophic conditions, a feature that may be especially valuable in reconstructing historical environments by assessing the abundance of statoblasts in sediment cores.
Resumo:
An outdoor experiment was conducted to increase understanding of apical leaf necrosis in the presence of pathogen infection. Holcus lanatus seeds and Puccinia coronata spores were collected from two adjacent and otherwise similar habitats with differing long-term N fertilization levels. After inoculation, disease and necrosis dynamics were observed during the plant growing seasons of 2003 and 2006. In both years high nutrient availability resulted in earlier disease onset, a higher pathogen population growth rate, earlier physiological apical leaf necrosis onset and a reduced time between disease onset and apical leaf necrosis onset. Necrosis rate was shown to be independent of nutrient availability. The results showed that in these nutrient-rich habitats H. lanatus plants adopted necrosis mechanisms which wasted more nutrients. There was some indication that these necrosis mechanisms were subject to local selection pressures, but these results were not conclusive. The findings of this study are consistent with apical leaf necrosis being an evolved defence mechanism.
Resumo:
Objectives: To assess the short- and long-term reproducibility of a short food group questionnaire, and to compare its performance for estimating nutrient intakes in comparison with a 7-day diet diary. Design: Participants for the reproducibility study completed the food group questionnaire at two time points, up to 2 years apart. Participants for the performance study completed both the food group questionnaire and a 7-day diet diary a few months apart. Reproducibility was assessed by kappa statistics and percentage change between the two questionnaires; performance was assessed by kappa statistics, rank correlations and percentages of participants classified into the same and opposite thirds of intake. Setting: A random sample of participants in the Million Women Study, a population-based prospective study in the UK. Subjects: In total, 12 221 women aged 50-64 years. Results: in the reproducibility study, 75% of the food group items showed at least moderate agreement for all four time-point comparisons. Items showing fair agreement or worse tended to be those where few respondents reported eating them more than once a week, those consumed in small amounts and those relating to types of fat consumed. Compared with the diet diary, the food group questionnaire showed consistently reasonable performance for the nutrients carbohydrate, saturated fat, cholesterol, total sugars, alcohol, fibre, calcium, riboflavin, folate and vitamin C. Conclusions: The short food group questionnaire used in this study has been shown to be reproducible over time and to perform reasonably well for the assessment of a number of dietary nutrients.
Resumo:
Purpose of review To summarize recent findings relating to the impact of dietary fat composition on whole body lipid metabolism, and common gene variants on the blood lipid response to dietary fat change. Recent findings In recent years a more comprehensive understanding of the impact of polyunsaturated fat (PUFA) intake on the regulation of transcription factors involved in lipogenesis and fatty acid and lipoprotein metabolism has emerged. The evidence is suggestive of a greater potency of the long chain n-3 PUFA eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), and in particular their oxidative products, relative to n-6 Pi In the area of nutrigenetics a number of common gene variants have been identified which may be important determinants of the blood lipid response to altered dietary fat composition. However, confirmation of associations in independent cohorts, and an understanding of the size effect of individual or combinations of genotypes, is often lacking. Summary Although in the future, genotyping holds the potential as a public health tool to target and personalize dietary advice, nutrigenetics is a relatively new science, and further research is needed to address the existing inconsistencies and knowledge gaps.
Resumo:
Background: Progression of the metabolic syndrome (MetS) is determined by genetic and environmental factors. Gene-environment interactions may be important in modulating the susceptibility to the development of MetS traits. Objective: Gene-nutrient interactions were examined in MetS subjects to determine interactions between single nucleotide polymorphisms (SNPs) in the adiponectin gene (ADIPOQ) and its receptors (ADIPOR1 and ADIPOR2) and plasma fatty acid composition and their effects on MetS characteristics. Design: Plasma fatty acid composition, insulin sensitivity, plasma adiponectin and lipid concentrations, and ADIPOQ, ADIPOR1, and ADIPOR2 SNP genotypes were determined in a cross-sectional analysis of 451 subjects with the MetS who participated in the LIPGENE (Diet, Genomics, and the Metabolic Syndrome: an Integrated Nutrition, Agro-food, Social, and Economic Analysis) dietary intervention study and were repeated in 1754 subjects from the LIPGENE-SU.VI.MAX (SUpplementation en VItamines et Mineraux AntioXydants) case-control study (http://www.ucd.ie/lipgene). Results: Single SNP effects were detected in the cohort. Triacylglycerols, nonesterified fatty acids, and waist circumference were significantly different between genotypes for 2 SNPs (rs266729 in ADIPOQ and rs10920533 in ADIPOR1). Minor allele homozygotes for both of these SNPs were identified as having degrees of insulin resistance, as measured by the homeostasis model assessment of insulin resistance, that were highly responsive to differences in plasma saturated fatty acids (SFAs). The SFA-dependent association between ADIPOR1 rs10920533 and insulin resistance was replicated in cases with MetS from a separate independent study, which was an association not present in controls. Conclusions: A reduction in plasma SFAs could be expected to lower insulin resistance in MetS subjects who are minor allele carriers of rs266729 in ADIPOQ and rs10920533 in ADIPOR1. Personalized dietary advice to decrease SFA consumption in these individuals may be recommended as a possible therapeutic measure to improve insulin sensitivity. This trial was registered at clinicaltrials.
Resumo:
Acetyl-CoA carboxylase β (ACC2) plays a key role in fatty acid synthesis and oxidation pathways. Disturbance of these pathways is associated with impaired insulin responsiveness and metabolic syndrome (MetS). Gene-nutrient interactions may affect MetS risk. This study determined the relationship between ACC2 polymorphisms (rs2075263, rs2268387, rs2284685, rs2284689, rs2300453, rs3742023, rs3742026, rs4766587, and rs6606697) and MetS risk, and whether dietary fatty acids modulate this in the LIPGENE-SU.VI.MAX study of MetS cases and matched controls (n = 1754). Minor A allele carriers of rs4766587 had increased MetS risk (OR 1.29 [CI 1.08, 1.58], P = 0.0064) compared with the GG homozygotes, which may in part be explained by their increased body mass index (BMI), abdominal obesity, and impaired insulin sensitivity (P < 0.05). MetS risk was modulated by dietary fat intake (P = 0.04 for gene-nutrient interaction), where risk conferred by the A allele was exacerbated among individuals with a high-fat intake (>35% energy) (OR 1.62 [CI 1.05, 2.50], P = 0.027), particularly a high intake (>5.5% energy) of n-6 polyunsaturated fat (PUFA) (OR 1.82 [CI 1.14, 2.94], P = 0.01; P = 0.05 for gene-nutrient interaction). Saturated and monounsaturated fat intake did not modulate MetS risk. Importantly, we replicated some of these findings in an independent cohort. In conclusion, the ACC2 rs4766587 polymorphism influences MetS risk, which was modulated by dietary fat, suggesting novel gene-nutrient interactions.
Resumo:
Assimilation of physical variables into coupled physical/biogeochemical models poses considerable difficulties. One problem is that data assimilation can break relationships between physical and biological variables. As a consequence, biological tracers, especially nutrients, are incorrectly displaced in the vertical, resulting in unrealistic biogeochemical fields. To prevent this, we present the idea of applying an increment to the nutrient field within a data assimilating model to ensure that nutrient-potential density relationships are maintained within a water column during assimilation. After correcting the nutrients, it is assumed that other biological variables rapidly adjust to the corrected nutrient fields. We applied this method to a 17 year run of the 2° NEMO ocean-ice model coupled to the PlankTOM5 ecosystem model. Results were compared with a control with no assimilation, and with a model with physical assimilation but no nutrient increment. In the nutrient incrementing experiment, phosphate distributions were improved both at high latitudes and at the equator. At midlatitudes, assimilation generated unrealistic advective upwelling of nutrients within the boundary currents, which spread into the subtropical gyres resulting in more biased nutrient fields. This result was largely unaffected by the nutrient increment and is probably due to boundary currents being poorly resolved in a 2° model. Changes to nutrient distributions fed through into other biological parameters altering primary production, air-sea CO2 flux, and chlorophyll distributions. These secondary changes were most pronounced in the subtropical gyres and at the equator, which are more nutrient limited than high latitudes.
Resumo:
Long-chain acyl CoA synthetase 1 (ACSL1) plays an important role in fatty acid metabolism and triacylglycerol (TAG) synthesis. Disturbance of these pathways may result in dyslipidemia and insulin resistance, hallmarks of the metabolic syndrome (MetS). Dietary fat is a key environmental factor that may interact with genetic determinants of lipid metabolism to affect MetS risk. We investigated the relationship between ACSL1 polymorphisms (rs4862417, rs6552828, rs13120078, rs9997745, and rs12503643) and MetS risk and determined potential interactions with dietary fat in the LIPGENE-SU.VI.MAX study of MetS cases and matched controls (n = 1,754). GG homozygotes for rs9997745 had increased MetS risk {odds ratio (OR) 1.90 [confidence interval (CI) 1.15, 3.13]; P = 0.01}, displayed elevated fasting glucose (P = 0.001) and insulin concentrations (P = 0.002) and increased insulin resistance (P = 0.03) relative to the A allele carriers. MetS risk was modulated by dietary fat, whereby the risk conferred by GG homozygosity was abolished among individuals consuming either a low-fat (<35% energy) or a high-PUFA diet (>5.5% energy). In conclusion, ACSL1 rs9997745 influences MetS risk, most likely via disturbances in fatty acid metabolism, which was modulated by dietary fat consumption, particularly PUFA intake, suggesting novel gene-nutrient interactions.
Resumo:
A study was conducted to investigate the effects of wheat straw ammonisation and supplementation with a rumen undegradable protein (UDP) source on nutrient digestion and nitrogen balance by lambs while diets were supplemented with kibbled carob pods as energy source. Ammonisation increased the crude protein content of wheat straw by nearly 100% and decreased the contents of neutral detergent fibre and acid detergent fibre by 7% and 1.7% respectively. Treating the straw with ammonia resulted in significant (P<0.01) increase in nitrogen (N) intake and intakes of organic matter (OM) and dry matter (DM) tended toward significance (P<0.1). The UDP source had no effect (P>0.05) on DM and OM intakes but resulted in an increase (P<0.05) of N intakes. Both, ammonization and UDP supplementation increased (P<0.01) the DM, OM and N digestibility. In conclusion, the results of this study suggest that ammonisation and UDP supplementation is a practical dietary manipulation option to improve the nutritional status of ruminants fed on roughage-based diets.
Effects of abomasal vegetable oil infusion on splanchnic nutrient metabolism in lactating dairy cows
Resumo:
The relationship between income and nutrient intake is explored. Nonparametric, panel, and quantile regressions are used. Engle curves for calories, fat, and protein are approximately linear in logs with carbohydrate intakes exhibiting diminishing elasticities as incomes increase. Elasticities range from 0.10 to 0.25, with fat having the highest elasticities. Countries in higher quantiles have lower elasticities than those in lower quantiles. Results predict significant cumulative increases in calorie consumption which are increasingly composed of fats. Though policies aimed at poverty alleviation and economic growth may assuage hunger and malnutrition, they may also exacerbate problems associated with obesity.
Resumo:
Research on arable sandy loam and silty clay loam soils on 4° slopes in England has shown that tramlines (i.e. the unseeded wheeling areas used to facilitate spraying operations in cereal crops) can represent the most important pathway for phosphorus and sediment loss from moderately sloping fields. Detailed monitoring over the October–March period in winters 2005–2006 and 2006–2007 included event-based sampling of surface runoff, suspended and particulate sediment, and dissolved and particulate phosphorus from hillslope segments (each ∼300–800 m2) established in a randomized block design with four replicates of each treatment at each of two sites on lighter and heavier soils. Experimental treatments assessed losses from the cropped area without tramlines, and from the uncropped tramline area, and were compared to losses from tramlines which had been disrupted once in the autumn with a shallow tine. On the lighter soil, the effects of removal or shallow incorporation of straw residues was also determined. Research on both sandy and silty clay loam soils across two winters showed that tramline wheelings represented the dominant pathway for surface runoff and transport of sediment, phosphorus and nitrogen from cereal crops on moderate slopes. Results indicated 5·5–15·8% of rainfall lost as runoff, and losses of 0·8–2·9 kg TP ha−1 and 0·3–4·8 t ha−1 sediment in tramline treatments, compared to only 0·2–1·7% rainfall lost as runoff, and losses of 0·0–0·2 kg TP ha−1 and 0·003–0·3 t ha−1 sediment from treatments without tramlines or those where tramlines had been disrupted. The novel shallow disruption of tramline wheelings using a tine once following the autumn spray operation consistently and dramatically reduced (p < 0·001) surface runoff and loads of sediment, total nitrogen and total phosphorus to levels similar to those measured in cropped areas between tramlines. Results suggest that options for managing tramline wheelings warrant further refinement and evaluation with a view to incorporating them into spatially-targeted farm-level management planning using national or catchment-based agri-environment policy instruments aimed at reducing diffuse pollution from land to surface water systems. Copyright © 2010 John Wiley & Sons, Ltd.