943 resultados para Numerical solutions of ODE’s
Resumo:
The goal of this work is the numerical realization of the probe method suggested by Ikehata for the detection of an obstacle D in inverse scattering. The main idea of the method is to use probes in the form of point source (., z) with source point z to define an indicator function (I) over cap (z) which can be reconstructed from Cauchy data or far. eld data. The indicator function boolean AND (I) over cap (z) can be shown to blow off when the source point z tends to the boundary aD, and this behavior can be used to find D. To study the feasibility of the probe method we will use two equivalent formulations of the indicator function. We will carry out the numerical realization of the functional and show reconstructions of a sound-soft obstacle.
Resumo:
The SCoTLASS problem-principal component analysis modified so that the components satisfy the Least Absolute Shrinkage and Selection Operator (LASSO) constraint-is reformulated as a dynamical system on the unit sphere. The LASSO inequality constraint is tackled by exterior penalty function. A globally convergent algorithm is developed based on the projected gradient approach. The algorithm is illustrated numerically and discussed on a well-known data set. (c) 2004 Elsevier B.V. All rights reserved.
Resumo:
We perform a numerical study of the evolution of a Coronal Mass Ejection (CME) and its interaction with the coronal magnetic field based on the 12 May 1997, CME event using a global MagnetoHydroDynamic (MHD) model for the solar corona. The ambient solar wind steady-state solution is driven by photospheric magnetic field data, while the solar eruption is obtained by superimposing an unstable flux rope onto the steady-state solution. During the initial stage of CME expansion, the core flux rope reconnects with the neighboring field, which facilitates lateral expansion of the CME footprint in the low corona. The flux rope field also reconnects with the oppositely orientated overlying magnetic field in the manner of the breakout model. During this stage of the eruption, the simulated CME rotates counter-clockwise to achieve an orientation that is in agreement with the interplanetary flux rope observed at 1 AU. A significant component of the CME that expands into interplanetary space comprises one of the side lobes created mainly as a result of reconnection with the overlying field. Within 3 hours, reconnection effectively modifies the CME connectivity from the initial condition where both footpoints are rooted in the active region to a situation where one footpoint is displaced into the quiet Sun, at a significant distance (≈1R ) from the original source region. The expansion and rotation due to interaction with the overlying magnetic field stops when the CME reaches the outer edge of the helmet streamer belt, where the field is organized on a global scale. The simulation thus offers a new view of the role reconnection plays in rotating a CME flux rope and transporting its footpoints while preserving its core structure.
Resumo:
1. Invasive ants commonly reach abnormally high abundances and have severe impacts on the ecosystems they invade. Current invasion theory recognises that not only negative interactions, such as natural enemy release, but positive interactions, such as facilitation, are important in causing this increased abundance. 2. For invasive ants, facilitation can occur through mutualism with exudate-producing plants and insects. To obtain such partnerships, however, invaders must first displace native ants, whose communities are highly structured around such resources. 3. By manipulating the abundance of an invasive ant relative to a native, we show that a minimum threshold abundance exists for invasive ants to monopolise exudate-producing resources. In addition, we show that behavioural dominance is context dependent and varies with spatial location and numerical abundance. 4. Thus, we suggest a 'facilitation-threshold' hypothesis of ant invasion, whereby a minimum abundance of invasive ants is required before facilitation and behavioural dominance can drive abundance rapidly upwards through positive feedback.
Resumo:
A numerical study of fluid mechanics and heat transfer in a scraped surface heat exchanger with non-Newtonian power law fluids is undertaken. Numerical results are generated for 2D steady-state conditions using finite element methods. The effect of blade design and material properties, and especially the independent effects of shear thinning and heat thinning on the flow and heat transfer, are studied. The results show that the gaps at the root of the blades, where the blades are connected to the inner cylinder, remove the stagnation points, reduce the net force on the blades and shift the location of the central stagnation point. The shear thinning property of the fluid reduces the local viscous dissipation close to the singularity corners, i.e. near the tip of the blades, and as a result the local fluid temperature is regulated. The heat thinning effect is greatest for Newtonian fluids where the viscous dissipation and the local temperature are highest at the tip of the blades. Where comparison is possible, very good agreement is found between the numerical results and the available data. Aspects of scraped surface heat exchanger design are assessed in the light of the results. (C) 2003 Elsevier Ltd. All rights reserved.