979 resultados para Nottingham
Resumo:
Objective: To explore the causes of preventable drug-related admissions (PDRAs) to hospital. Design: Qualitative case studies using semi-structured interviews and medical record review; data analysed using a framework derived from Reason's model of organisational accidents and cascade analysis. Participants: 62 participants, including 18 patients, 8 informal carers, 17 general practitioners, 12 community pharmacists, 3 practice nurses and 4 other members of healthcare staff, involved in events leading up to the patients' hospital admissions. Setting: Nottingham, UK. Results: PDRAs are associated with problems at multiple stages in the medication use process, including prescribing, dispensing, administration, monitoring and help seeking. The main causes of these problems are communication failures ( between patients and healthcare professionals and different groups of healthcare professionals) and knowledge gaps ( about drugs and patients' medical and medication histories). The causes of PDRAs are similar irrespective of whether the hospital admission is associated with a prescribing, monitoring or patient adherence problem. Conclusions: The causes of PDRAs are multifaceted and complex. Technical solutions to PDRAs will need to take account of this complexity and are unlikely to be sufficient on their own. Interventions targeting the human causes of PDRAs are also necessary - for example, improving methods of communication.
Resumo:
The eMinerals project has established an integrated compute and data minigrid infrastructure together with a set of collaborative tools,. The infrastructure is designed to support molecular simulation scientists working together as a virtual organisation aiming to understand a number of strategic processes in environmental science. The eMinerals virtual organisation is now working towards applying this infrastructure to tackle a new generation of scientific problems. This paper describes the achievements of the eMinerals virtual organisation to date, and describes ongoing applications of the virtual organisation infrastructure.
Resumo:
As the building industry proceeds in the direction of low impact buildings, research attention is being drawn towards the reduction of carbon dioxide emission and waste. Starting from design and construction to operation and demolition, various building materials are used throughout the whole building lifecycle involving significant energy consumption and waste generation. Building Information Modelling (BIM) is emerging as a tool that can support holistic design-decision making for reducing embodied carbon and waste production in the building lifecycle. This study aims to establish a framework for assessing embodied carbon and waste underpinned by BIM technology. On the basis of current research review, the framework is considered to include functional modules for embodied carbon computation. There are a module for waste estimation, a knowledge-base of construction and demolition methods, a repository of building components information, and an inventory of construction materials’ energy and carbon. Through both static 3D model visualisation and dynamic modelling supported by the framework, embodied energy (carbon), waste and associated costs can be analysed in the boundary of cradle-to-gate, construction, operation, and demolition. The proposed holistic modelling framework provides a possibility to analyse embodied carbon and waste from different building lifecycle perspectives including associated costs. It brings together existing segmented embodied carbon and waste estimation into a unified model, so that interactions between various parameters through the different building lifecycle phases can be better understood. Thus, it can improve design-decision support for optimal low impact building development. The applicability of this framework is anticipated being developed and tested on industrial projects in the near future.