954 resultados para Nonsmooth Calculus
Resumo:
Fractional order dynamics in physics, particularly when applied to diffusion, leads to an extension of the concept of Brown-ian motion through a generalization of the Gaussian probability function to what is termed anomalous diffusion. As MRI is applied with increasing temporal and spatial resolution, the spin dynamics are being examined more closely; such examinations extend our knowledge of biological materials through a detailed analysis of relaxation time distribution and water diffusion heterogeneity. Here the dynamic models become more complex as they attempt to correlate new data with a multiplicity of tissue compartments where processes are often anisotropic. Anomalous diffusion in the human brain using fractional order calculus has been investigated. Recently, a new diffusion model was proposed by solving the Bloch-Torrey equation using fractional order calculus with respect to time and space (see R.L. Magin et al., J. Magnetic Resonance, 190 (2008) 255-270). However effective numerical methods and supporting error analyses for the fractional Bloch-Torrey equation are still limited. In this paper, the space and time fractional Bloch-Torrey equation (ST-FBTE) is considered. The time and space derivatives in the ST-FBTE are replaced by the Caputo and the sequential Riesz fractional derivatives, respectively. Firstly, we derive an analytical solution for the ST-FBTE with initial and boundary conditions on a finite domain. Secondly, we propose an implicit numerical method (INM) for the ST-FBTE, and the stability and convergence of the INM are investigated. We prove that the implicit numerical method for the ST-FBTE is unconditionally stable and convergent. Finally, we present some numerical results that support our theoretical analysis.
Resumo:
The Internet is one of the most significant information and communication technologies to emerge during the end of the last century. It created new and effective means by which individuals and groups communicate. These advances led to marked institutional changes most notably in the realm of commercial exchange: it did not only provide the high-speed communication infrastructure to business enterprises; it also opened them to the global consumer base where they could market their products and services. Commercial interests gradually dominated Internet technology over the past several years and have been a factor in the increase of its user population and enhancement of infrastructure. Such commercial interests fitted comfortably within the structures of the Philippine government. As revealed in the study, state policies and programs make use of Internet technology as an enabler of commercial institutional reforms using traditional economic measures. Yet, despite efforts to maximize the Internet as an enabler for market-driven economic growth, the accrued benefits are yet to come about; it is largely present only in major urban areas and accessible to a small number of social groups. The failure of the Internet’s developmental capability can be traced back to the government’s wholesale adoption of commercial-centered discourse. The Internet’s developmental gains (i.e. instrumental, communicative and emancipatory) and features, which were always there since its inception, have been visibly left out in favor of its commercial value. By employing synchronic and diachronic analysis, it can be shown that the Internet can be a vital technology in promoting genuine social development in the Philippines. In general, the object is to realize a social environment of towards a more inclusive and participatory application of Internet technology, equally aware of the caveats or risks the technology may pose. It is argued further that there is a need for continued social scientific research regarding the social as and developmental implications of Internet technology at local level structures, such social sectors, specific communities and organizations. On the meta-level, such approach employed in this research can be a modest attempt in increasing the calculus of hope especially among the marginalized Filipino sectors, with the use of information and communications technologies. This emerging field of study—tentatively called Progressive Informatics—must emanate from the more enlightened social sectors, namely: the non-government, academic and locally-based organizations.
Resumo:
The SimCalc Vision and Contributions Advances in Mathematics Education 2013, pp 419-436 Modeling as a Means for Making Powerful Ideas Accessible to Children at an Early Age Richard Lesh, Lyn English, Serife Sevis, Chanda Riggs … show all 4 hide » Look Inside » Get Access Abstract In modern societies in the 21st century, significant changes have been occurring in the kinds of “mathematical thinking” that are needed outside of school. Even in the case of primary school children (grades K-2), children not only encounter situations where numbers refer to sets of discrete objects that can be counted. Numbers also are used to describe situations that involve continuous quantities (inches, feet, pounds, etc.), signed quantities, quantities that have both magnitude and direction, locations (coordinates, or ordinal quantities), transformations (actions), accumulating quantities, continually changing quantities, and other kinds of mathematical objects. Furthermore, if we ask, what kind of situations can children use numbers to describe? rather than restricting attention to situations where children should be able to calculate correctly, then this study shows that average ability children in grades K-2 are (and need to be) able to productively mathematize situations that involve far more than simple counts. Similarly, whereas nearly the entire K-16 mathematics curriculum is restricted to situations that can be mathematized using a single input-output rule going in one direction, even the lives of primary school children are filled with situations that involve several interacting actions—and which involve feedback loops, second-order effects, and issues such as maximization, minimization, or stabilizations (which, many years ago, needed to be postponed until students had been introduced to calculus). …This brief paper demonstrates that, if children’s stories are used to introduce simulations of “real life” problem solving situations, then average ability primary school children are quite capable of dealing productively with 60-minute problems that involve (a) many kinds of quantities in addition to “counts,” (b) integrated collections of concepts associated with a variety of textbook topic areas, (c) interactions among several different actors, and (d) issues such as maximization, minimization, and stabilization.
Resumo:
In this paper, the spectral approximations are used to compute the fractional integral and the Caputo derivative. The effective recursive formulae based on the Legendre, Chebyshev and Jacobi polynomials are developed to approximate the fractional integral. And the succinct scheme for approximating the Caputo derivative is also derived. The collocation method is proposed to solve the fractional initial value problems and boundary value problems. Numerical examples are also provided to illustrate the effectiveness of the derived methods.
Resumo:
The space and time fractional Bloch–Torrey equation (ST-FBTE) has been used to study anomalous diffusion in the human brain. Numerical methods for solving ST-FBTE in three-dimensions are computationally demanding. In this paper, we propose a computationally effective fractional alternating direction method (FADM) to overcome this problem. We consider ST-FBTE on a finite domain where the time and space derivatives are replaced by the Caputo–Djrbashian and the sequential Riesz fractional derivatives, respectively. The stability and convergence properties of the FADM are discussed. Finally, some numerical results for ST-FBTE are given to confirm our theoretical findings.
Resumo:
The first objective of this project is to develop new efficient numerical methods and supporting error and convergence analysis for solving fractional partial differential equations to study anomalous diffusion in biological tissue such as the human brain. The second objective is to develop a new efficient fractional differential-based approach for texture enhancement in image processing. The results of the thesis highlight that the fractional order analysis captured important features of nuclear magnetic resonance (NMR) relaxation and can be used to improve the quality of medical imaging.
Resumo:
Although there was substantial research into the occupational health and safety sector over the past forty years, this generally focused on statistical analyses of data related to costs and/or fatalities and injuries. There is a lack of mathematical modelling of the interactions between workers and the resulting safety dynamics of the workplace. There is also little work investigating the potential impact of different safety intervention programs prior to their implementation. In this article, we present a fundamental, differential equation-based model of workplace safety that treats worker safety habits similarly to an infectious disease in an epidemic model. Analytical results for the model, derived via phase plane and stability analysis, are discussed. The model is coupled with a model of a generic safety strategy aimed at minimising unsafe work habits, to produce an optimal control problem. The optimal control model is solved using the forward-backward sweep numerical scheme implemented in Matlab.
Resumo:
An ubiquitous problem in control system design is that the system must operate subject to various constraints. Although the topic of constrained control has a long history in practice, there have been recent significant advances in the supporting theory. In this chapter, we give an introduction to constrained control. In particular, we describe contemporary work which shows that the constrained optimal control problem for discrete-time systems has an interesting geometric structure and a simple local solution. We also discuss issues associated with the output feedback solution to this class of problems, and the implication of these results in the closely related problem of anti-windup. As an application, we address the problem of rudder roll stabilization for ships.
Resumo:
This e-book is devoted to the use of spreadsheets in the service of education in a broad spectrum of disciplines: science, mathematics, engineering, business, and general education. The effort is aimed at collecting the works of prominent researchers and educators that make use of spreadsheets as a means to communicate concepts with high educational value. The e-book brings some of the most recent applications of spreadsheets in education and research to the fore. To offer the reader a broad overview of the diversity of applications, carefully chosen articles from engineering (power systems and control), mathematics (calculus, differential equations, and probability), science (physics and chemistry), and education are provided. Some of these applications make use of Visual Basic for Applications (VBA), a versatile computer language that further expands the functionality of spreadsheets. The material included in this e-book should inspire readers to devise their own applications and enhance their teaching and/or learning experience.
Resumo:
Texture enhancement is an important component of image processing that finds extensive application in science and engineering. The quality of medical images, quantified using the imaging texture, plays a significant role in the routine diagnosis performed by medical practitioners. Most image texture enhancement is performed using classical integral order differential mask operators. Recently, first order fractional differential operators were used to enhance images. Experimentation with these methods led to the conclusion that fractional differential operators not only maintain the low frequency contour features in the smooth areas of the image, but they also nonlinearly enhance edges and textures corresponding to high frequency image components. However, whilst these methods perform well in particular cases, they are not routinely useful across all applications. To this end, we apply the second order Riesz fractional differential operator to improve upon existing approaches of texture enhancement. Compared with the classical integral order differential mask operators and other first order fractional differential operators, we find that our new algorithms provide higher signal to noise values and superior image quality.
Resumo:
Diffusion weighted magnetic resonance imaging is a powerful tool that can be employed to study white matter microstructure by examining the 3D displacement profile of water molecules in brain tissue. By applying diffusion-sensitized gradients along a minimum of six directions, second-order tensors (represented by three-by-three positive definite matrices) can be computed to model dominant diffusion processes. However, conventional DTI is not sufficient to resolve more complicated white matter configurations, e.g., crossing fiber tracts. Recently, a number of high-angular resolution schemes with more than six gradient directions have been employed to address this issue. In this article, we introduce the tensor distribution function (TDF), a probability function defined on the space of symmetric positive definite matrices. Using the calculus of variations, we solve the TDF that optimally describes the observed data. Here, fiber crossing is modeled as an ensemble of Gaussian diffusion processes with weights specified by the TDF. Once this optimal TDF is determined, the orientation distribution function (ODF) can easily be computed by analytic integration of the resulting displacement probability function. Moreover, a tensor orientation distribution function (TOD) may also be derived from the TDF, allowing for the estimation of principal fiber directions and their corresponding eigenvalues.
Resumo:
Fractional differential equations are becoming increasingly used as a powerful modelling approach for understanding the many aspects of nonlocality and spatial heterogeneity. However, the numerical approximation of these models is demanding and imposes a number of computational constraints. In this paper, we introduce Fourier spectral methods as an attractive and easy-to-code alternative for the integration of fractional-in-space reaction-diffusion equations described by the fractional Laplacian in bounded rectangular domains ofRn. The main advantages of the proposed schemes is that they yield a fully diagonal representation of the fractional operator, with increased accuracy and efficiency when compared to low-order counterparts, and a completely straightforward extension to two and three spatial dimensions. Our approach is illustrated by solving several problems of practical interest, including the fractional Allen–Cahn, FitzHugh–Nagumo and Gray–Scott models, together with an analysis of the properties of these systems in terms of the fractional power of the underlying Laplacian operator.