986 resultados para Nonlinear dynamical effect
Resumo:
This work presents the complete set of features for solutions of a particular non-ideal mechanical system near the fundamental and near to a secondary resonance region. The system comprises a pendulum with a horizontally moving suspension point. Its motion is the result of a non-ideal rotating power source (limited power supply), acting oil the Suspension point through a crank mechanism. Main emphasis is given to the loss of stability, which occurs by a sequence of events, including intermittence and crisis, when the system reaches a chaotic attractor. The system also undergoes a boundary-crisis, which presents a different aspect in the bifurcation diagram due to the non-ideal supposition. (c) 2004 Published by Elsevier B.V.
Resumo:
A kinetic study of the ultrasound-stimulated and acid-catalyzed sonohydrolysis of tetraethyl orthosilicate (TEOS) in solventless TEOS-water heterogeneous mixtures was carried out by means of a calorimetric method as a function of the ultrasound power. The hydrolysis reaction starts in acidulated heterogeneous water-TEOS mixtures after an induction period under ultrasonic stimulation. The ultrasound power seems to play a role on the dynamical coupling of the system originating a continuum upward shifting of the base line during the induction period of sonication. The rate in which the base line is upward shifted diminishes with the power. The best coupling between the ultrasound and the reactant heterogeneous mixtures for this experimental setup was found to occur at 50 W, for which the gelation time was found to be a minimum. The kinetics of the heterogeneous TEOS sonohydrolysis was studied on the basis of a dissolution and reaction modeling. The heterogeneous reaction pathway as deduced from the kinetic study was drawn in a ternary diagram as a function of the ultrasound power. (C) 2006 Elsevier B.V. All rights reserved.
Resumo:
A study was made on the effect of the addition of BaO (0.025-0.05 mol%) and Bi2O3 (0.025-0.05 mol%) to the TiO2.Ta2O5.MnO2 material. The samples were characterized by X-ray diffraction, and current-voltage measurements were accomplished for determination of the nonlinear coefficient. An analysis was made to evaluate the microstructural characteristics of the materials. The most appropriate sintering conditions for the materials were analyzed with the purpose of obtaining the best nonlinear coefficient associated with the smallest breakdown electric field. After sintering at 1400 degreesC for 2 h, a low-voltage (30 V cm(-1)) varistor was obtained, which, however, presented a low nonlinear coefficient (6). It was found that the sintering conditions must be controlled in order to improve the electrical properties of these materials. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
This work illustrates the advancement of research on TiO2-based electroceramics. In this work will be presented that the addition of different dopants, as well as thermal treatments at oxidizing and inert atmosphere, influences of the densification, the mean grain size and the electrical properties of the TiO2-based varistor ceramics. Dopants like Ta2O5, Nb2O5, and Cr2O3 have an especial role in the barrier formation at the grain boundary in the TiO2 varistors, increasing the nonlinear coefficient and decreasing the breakdown electric field. The influence of Cr'(Ti) is to increase the O' and O'(2) adsorption at the grain boundary interface and to promote a decrease in the conductivity by donating electrons to O-2 adsorbed at the grain boundary. In this paper, TiO2 and (Sn,Ti)O-2-based studies of polycrystalline ceramics, which show a non-linear I-V electrical response typical of low voltage varistor systems are also presented. All these systems are potentially promising for varistor applications. (C) 2004 Kluwer Academic Publishers.
Resumo:
This paper concerns an investigation into the use of cubic nonlinearity in a vibration neutralizer to improve its effectiveness. It is assumed that the frequency of the harmonic excitation is well above the resonance frequency of the machine to which the neutralizer is attached, and that the machine acts as a simple mass. It is also assumed that the response of the system is predominantly at the harmonic excitation frequency of the machine. The harmonic balance method is used to analyze the system. It is shown how the nonlinearity has the effect of shifting the resonant peak to a higher frequency away from the tuned frequency of the neutralizer so that the device is robust to mistune. In a linear neutralizer this can only be achieved by adding mass to the neutralizer, so the nonlinearity has a similar effect to that of adding mass. Some characteristic features are highlighted, and the effects of the system parameters on the performance are discussed. It is shown that, for a particular combination of the system parameters, the effect of the nonlinearity is also to increase the bandwidth of the device compared to the linear neutralizer with similar mass and damping. Some approximate expressions are derived, which facilitate insight into the parameters which influence the dynamics of the system. The results are validated by some experimental work. (c) 2012 Elsevier Ltd. All rights reserved.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Nonlinear absorption and amplification of a probe laser beam can be controlled by adjustment of the intensity-modulation frequency and the wavelength of a pump laser beam. A demonstration of this effect in Er3+-doped fluoroindate glass is presented. The results show maximum amplification of the probe beam (∼12%) when a pump laser emitting 16 mW of power is modulated at ∼30 Hz. In the limit of low modulation frequencies, or cw pumping, induced absorption of the probe beam is the dominant nonlinear process. © 1999 Optical Society of America.
Resumo:
In this work a particular system is investigated consisting of a pendalum whose point of support is vibrated along a horizontal guide by a two bar linkage driven from a DC motor, considered as a limited power source. This system is nonideal since the oscillatory motion of the pendulum influences the speed of the motor and vice-versa, reflecting in a more complicated dynamical process. This work comprises the investigation of the phenomena that appear when the frequency of the pendulum draws near a secondary resonance region, due to the existing nonlinear interactions in the system. Also in this domain due to the power limitation of the motor, the frequency of the pendulum can be captured at resonance modifying completely the final response of the system. This behavior is known as Sommerfield effect and it will be studied here for a nonlinear system.
Resumo:
This paper describes a nonlinear phenomenon in the dynamical behavior of a nonlinear system under two non-ideal excitations: the self-synchronization of unbalanced direct current motors. The considered model is taken as a Duffing system that is excited by two unbalanced direct current motors with limited power supplies. The results obtained by using numerical simulations are discussed in details.
Resumo:
This work aims at a better comprehension of the features of the solution surface of a dynamical system presenting a numerical procedure based on transient trajectories. For a given set of initial conditions an analysis is made, similar to that of a return map, looking for the new configuration of this set in the first Poincaré sections. The mentioned set of I.C. will result in a curve that can be fitted by a polynomial, i.e. an analytical expression that will be called initial function in the undamped case and transient function in the damped situation. Thus, it is possible to identify using analytical methods the main stable regions of the phase portrait without a long computational time, making easier a global comprehension of the nonlinear dynamics and the corresponding stability analysis of its solutions. This strategy allows foreseeing the dynamic behavior of the system close to the region of fundamental resonance, providing a better visualization of the structure of its phase portrait. The application chosen to present this methodology is a mechanical pendulum driven through a crankshaft that moves horizontally its suspension point.
Resumo:
We present a simple mathematical model of a wind turbine supporting tower. Here, the wind excitation is considered to be a non-ideal power source. In such a consideration, there is interaction between the energy supply and the motion of the supporting structure. If power is not enough, the rotation of the generator may get stuck at a resonance frequency of the structure. This is a manifestation of the so-called Sommerfeld Effect. In this model, at first, only two degrees of freedom are considered, the horizontal motion of the upper tip of the tower, in the transverse direction to the wind, and the generator rotation. Next, we add another degree of freedom, the motion of a free rolling mass inside a chamber. Its impact with the walls of the chamber provides control of both the amplitude of the tower vibration and the width of the band of frequencies in which the Sommerfeld effect occur. Some numerical simulations are performed using the equations of motion of the models obtained via a Lagrangian approach.
Resumo:
In practical situations, the dynamics of the forcing function on a vibrating system cannot be considered as given a priori, and it must be taken as a consequence of the dynamics of the whole system. In other words, the forcing source has limited power, as that provided by a DC motor for an example, and thus its own dynamics is influenced by that of the vibrating system being forced. This increases the number of degrees of freedom of the problem, and it is called a non-ideal problem. In this work, we considerer two non-ideal problems analyzed by using numerical simulations. The existence of the Sommerfeld effect was verified, that is, the effect of getting stuck at resonance (energy imparted to the DC motor being used to excite large amplitude motions of the supporting structure). We considered two kinds of non-ideal problem: one related to the transverse vibrations of a shaft carrying two disks and another to a piezoceramic bar transducer powered by a vacuum tube generated by a non-ideal source Copyright © 2007 by ASME.
Resumo:
In this paper, a mathematical model is derived via Lagrange's Equation for a shear building structure that acts as a foundation of a non-ideal direct current electric motor, controlled by a mass loose inside a circular carving. Non-ideal sources of vibrations of structures are those whose characteristics are coupled to the motion of the structure, not being a function of time only as in the ideal case. Thus, in this case, an additional equation of motion is written, related to the motor rotation, coupled to the equation describing the horizontal motion of the shear building. This kind of problem can lead to the so-called Sommerfeld effect: steady state frequencies of the motor will usually increase as more power (voltage) is given to it in a step-by-step fashion. When a resonance condition with the structure is reached, the better part of this energy is consumed to generate large amplitude vibrations of the foundation without sensible change of the motor frequency as before. If additional increase steps in voltage are made, one may reach a situation where the rotor will jump to higher rotation regimes, no steady states being stable in between. As a device of passive control of both large amplitude vibrations and the Sommerfeld effect, a scheme is proposed using a point mass free to bounce back and forth inside a circular carving in the suspended mass of the structure. Numerical simulations of the model are also presented Copyright © 2007 by ASME.