838 resultados para Non-genetic factors


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Most information in linkage analysis for quantitative traits comes from pairs of relatives that are phenotypically most discordant or concordant. Confounding this, within-family outliers from non-genetic causes may create false positives and negatives. We investigated the influence of within-family outliers empirically, using one of the largest genome-wide linkage scans for height. The subjects were drawn from Australian twin cohorts consisting of 8447 individuals in 2861 families, providing a total of 5815 possible pairs of siblings in sibships. A variance component linkage analysis was performed, either including or excluding the within-family outliers. Using the entire dataset, the largest LOD scores were on chromosome 15q (LOD 2.3) and 11q (1.5). Excluding within-family outliers increased the LOD score for most regions, but the LOD score on chromosome 15 decreased from 2.3 to 1.2, suggesting that the outliers may create false negatives and false positives, although rare alleles of large effect may also be an explanation. Several regions suggestive of linkage to height were found after removing the outliers, including 1q23.1 (2.0), 3q22.1 (1.9) and 5q32 (2.3). We conclude that the investigation of the effect of within-family outliers, which is usually neglected, should be a standard quality control measure in linkage analysis for complex traits and may reduce the noise for the search of common variants of modest effect size as well as help identify rare variants of large effect and clinical significance. We suggest that the effect of within-family outliers deserves further investigation via theoretical and simulation studies.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The discovery of genetic factors that contribute to schizophrenia susceptibility is a key challenge in understanding the etiology of this disease. Here, we report the identification of a novel schizophrenia candidate gene on chromosome 1q32, plexin A2 (PLXNA2), in a genome-wide association study using 320 patients with schizophrenia of European descent and 325 matched controls. Over 25,000 single-nucleotide polymorphisms (SNPs) located within approximately 14,000 genes were tested. Out of 62 markers found to be associated with disease status, the most consistent finding was observed for a candidate locus on chromosome 1q32. The marker SNP rs752016 showed suggestive association with schizophrenia (odds ratio (OR) = 1.49, P = 0.006). This result was confirmed in an independent case-control sample of European Americans (combined OR = 1.38, P = 0.035) and similar genetic effects were observed in smaller subsets of Latin Americans (OR = 1.26) and Asian Americans (OR = 1.37). Supporting evidence was also obtained from two family-based collections, one of which reached statistical significance (OR = 2.2, P = 0.02). High-density SNP mapping showed that the region of association spans approximately 60 kb of the PLXNA2 gene. Eight out of 14 SNPs genotyped showed statistically significant differences between cases and controls. These results are in accordance with previous genetic findings that identified chromosome 1q32 as a candidate region for schizophrenia. PLXNA2 is a member of the transmembrane semaphorin receptor family that is involved in axonal guidance during development and may modulate neuronal plasticity and regeneration. The PLXNA2 ligand semaphorin 3A has been shown to be upregulated in the cerebellum of individuals with schizophrenia. These observations, together with the genetic results, make PLXNA2 a likely candidate for the 1q32 schizophrenia susceptibility locus.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Postnatal myofibre characteristics and muscle mass are largely determined during fetal development and may be significantly affected by epigenetic parent-of-origin effects. However, data on such effects in prenatal muscle development that could help understand unexplained variation in postnatal muscle traits are lacking. In a bovine model we studied effects of distinct maternal and paternal genomes, fetal sex, and non-genetic maternal effects on fetal myofibre characteristics and muscle mass. Data from 73 fetuses (Day153, 54% term) of four genetic groups with purebred and reciprocal cross Angus and Brahman genetics were analyzed using general linear models. Parental genomes explained the greatest proportion of variation in myofibre size of Musculus semitendinosus (80-96%) and in absolute and relative weights of M. supraspinatus, M. longissimus dorsi, M. quadriceps femoris and M. semimembranosus (82-89% and 56-93%, respectively). Paternal genome in interaction with maternal genome (P<0.05) explained most genetic variation in cross sectional area (CSA) of fast myotubes (68%), while maternal genome alone explained most genetic variation in CSA of fast myofibres (93%, P<0.01). Furthermore, maternal genome independently (M. semimembranosus, 88%, P<0.0001) or in combination (M. supraspinatus, 82%; M. longissimus dorsi, 93%; M. quadriceps femoris, 86%) with nested maternal weight effect (5-6%, P<0.05), was the predominant source of variation for absolute muscle weights. Effects of paternal genome on muscle mass decreased from thoracic to pelvic limb and accounted for all (M. supraspinatus, 97%, P<0.0001) or most (M. longissimus dorsi, 69%, P<0.0001; M. quadriceps femoris, 54%, P<0.001) genetic variation in relative weights. An interaction between maternal and paternal genomes (P<0.01) and effects of maternal weight (P<0.05) on expression of H19, a master regulator of an imprinted gene network, and negative correlations between H19 expression and fetal muscle mass (P<0.001), suggested imprinted genes and miRNA interference as mechanisms for differential effects of maternal and paternal genomes on fetal muscle.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In this article, we describe and compare two individual-based models constructed to investigate how genetic factors influence the development of phosphine resistance in lesser grain borer (R. dominica). One model is based on the simplifying assumption that resistance is conferred by alleles at a single locus, while the other is based on the more realistic assumption that resistance is conferred by alleles at two separate loci. We simulated the population dynamic of R. dominica in the absence of phosphine fumigation, and under high and low dose phosphine treatments, and found important differences between the predictions of the two models in all three cases. In the absence of fumigation, starting from the same initial frequencies of genotypes, the two models tended to different stable frequencies, although both reached Hardy-Weinberg equilibrium. The one-locus model exaggerated the equilibrium proportion of strongly resistant beetles by 3.6 times, compared to the aggregated predictions of the two-locus model. Under a low dose treatment the one-locus model overestimated the proportion of strongly resistant individuals within the population and underestimated the total population numbers compared to the two-locus model. These results show the importance of basing resistance evolution models on realistic genetics and that using oversimplified one-locus models to develop pest control strategies runs the risk of not correctly identifying tactics to minimise the incidence of pest infestation.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Some of the most productive taxa for forestry are interspecific F1 hybrids grown as exotics in the tropics and subtropics. Attributes of resilience, adaptability and vigour which engender the hybrids for wood production, may also exacerbate the risk they present from gene flow to native species gene pools or to local ecologies as weeds. To determine the biological and genetic factors that influence the extent of hybridisation, we examine the distribution and genealogy of wildlings surrounding plantings of locally-exotic Corymbia torelliana (Section Cadageria) near native C. henryi (Section Maculatae) in northern New South Wales. Our study showed pre-mating and pre- and post-zygotic barriers were incomplete, with in situ generation and natural establishment of both F1 hybrids (n = 3) and advanced generation hybrids under the disturbed conditions bordering native forest. As hybrids were located on alluvial flats exposed to frost, they also likely have an extended ecological range relative to native C. henryi. Despite the likely generation of large viable seed crops on F1 trees at the site over many years, establishment success and survival of advanced generation hybrids may be low, as only 5 immature and no mature advanced generation hybrids were identified. Propagation and genetic analysis of a seed crop from one F1 wildling showed early survival and vigour of seedlings in cultivation was high, and that at least for some F1 in some seasons, backcrossing to the recurrent native C. henryi parent is favoured (60%), whereas selfing (10%) and crossing with other F1 (30%) was less frequent. Transport of seed by stingless bees probably accounted for long distance dispersal from C. torelliana, but this mechanism does not appear to supplement gravity-dispersal of seed from the F1. Coupled with other evidence from studies of bee behaviour, controlled pollination in Corymbia sp., and long-term fitness in second generation eucalypt hybrids, we anticipate gene flow via pollen rather than seed will be the greater challenge for managing the risk of introgression of C. torelliana ancestry into native species from the planted F1 hybrid. If large sources of F1 pollen become available to compete with native pollen, gene flow will probably be frequent and hybrids may establish in disturbed conditions and in habitats beyond the ecological range of their native parent. Further study is needed to determine the degree to which outbreeding depression and poor survival inhibits on-going gene flow.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Congenital missing of teeth, tooth agenesis or hypodontia, is one of the most common developmental anomalies in man. The common forms in which one or a few teeth are absent, may cause occlusal or cosmetic harm, while severe forms which are relatively rare always require clinical attention to support and maintain the dental function. Observation of tooth agenesis is also important for diagnosis of malformation syndromes. Some external factors may cause developmental defects and agenesis in dentition. However, the role of inheritance in the etiology of tooth agenesis is well established by twin and family studies. Studies on familial tooth agenesis as well as mouse null mutants have also identified several genetic factors. However, these explain syndromic or rare dominant forms of tooth agenesis, whereas the genes and defects responsible for the majority of cases of tooth agenesis, especially the common and less severe forms, are largely unknown. In this study it was shown, that a dominant nonsense mutation in PAX9 was responsible for severe tooth agenesis (oligodontia) in a Finnish family. In a study of tooth agenesis associated with Wolf-Hirschhorn syndrome, it was shown that severe tooth agenesis was present if the causative deletion in 4p spanned the MSX1 locus. It was concluded that severe tooth agenesis was caused by haploinsufficiency of these transcription factors. A summary of the phenotypes associated with known defects in MSX1 and PAX9 showed that, despite similarities, they were significantly different, suggesting that the genes, in addition to known interactions, also have independent roles during the development of human dentition. The original aim of this work was to identify gene defects that underlie the common incisor and premolar hypodontia. After excluding several candidate genes, a genome-wide search was conducted in seven Finnish families in which this phenotype was inherited in an autosomal dominant manner. A promising locus for second premolar agenesis was identified in chromosome 18 in one family and this finding was supported by results from other families. The results also implied the existence of other loci both for second premolar agenesis and for incisor agenesis. On the other hand the results did not lend support for comprehensive involvement of the most obvious candidate genes in the etiology of incisor and premolar hypodontia. Rather, they suggest remarkable genetic heterogeneity of tooth agenesis. The available evidence suggests that quantitative defects during tooth development predispose to a failure to overcome a developmental threshold and to agenesis. The results of the study increase the understanding of the etiology and heredity of tooth agenesis. Further studies may lead to identification of novel genes that affect the development of teeth.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Aiming to identify novel genetic variants and to confirm previously identified genetic variants associated with bone mineral density (BMD), we conducted a three-stage genome-wide association (GWA) meta-analysis in 27 061 study subjects. Stage 1 meta-analyzed seven GWA samples and 11 140 subjects for BMDs at the lumbar spine, hip and femoral neck, followed by a Stage 2 in silico replication of 33 SNPs in 9258 subjects, and by a Stage 3 de novo validation of three SNPs in 6663 subjects. Combining evidence from all the stages, we have identified two novel loci that have not been reported previously at the genome-wide significance (GWS; 5.0 × 10-8) level: 14q24.2 (rs227425, P-value 3.98 × 10-13, SMOC1) in the combined sample of males and females and 21q22.13 (rs170183, P-value 4.15 × 10-9, CLDN14) in the female-specific sample. The two newly identified SNPs were also significant in the GEnetic Factors for OSteoporosis consortium (GEFOS, n 5 32 960) summary results. We have also independently confirmed 13 previously reported loci at the GWS level: 1p36.12 (ZBTB40), 1p31.3 (GPR177), 4p16.3 (FGFRL1), 4q22.1 (MEPE), 5q14.3 (MEF2C), 6q25.1 (C6orf97, ESR1), 7q21.3 (FLJ42280, SHFM1), 7q31.31 (FAM3C, WNT16), 8q24.12 (TNFRSF11B), 11p15.3 (SOX6), 11q13.4 (LRP5), 13q14.11 (AKAP11) and 16q24 (FOXL1). Gene expression analysis in osteogenic cells implied potential functional association of the two candidate genes (SMOC1 and CLDN14) in bone metabolism. Our findings independently confirm previously identified biological pathways underlying bone metabolism and contribute to the discovery of novel pathways, thus providing valuable insights into the intervention and treatment of osteoporosis. © The Author 2013. Published by Oxford University Press.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Breast cancer is the most commonly occurring cancer among women, and its incidence is increasing worldwide. Positive family history is a well established risk factor for breast cancer, and it is suggested that the proportion of breast cancer that can be attributed to genetic factors may be as high as 30%. However, all the currently known breast cancer susceptibility genes are estimated to account for 20-30% of familial breast cancer, and only 5% of the total breast cancer incidence. It is thus likely that there are still other breast cancer susceptibility genes to be found. Cellular responses to DNA damage are crucial for maintaining genomic integrity and preventing the development of cancer. The genes operating in DNA damage response signaling network are thus good candidates for breast cancer susceptibility genes. The aim of this study was to evaluate the role of three DNA damage response associated genes, ATM, RAD50, and p53, in breast cancer. ATM, a gene causative for ataxia telangiectasia (A-T), has long been a strong candidate for a breast cancer susceptibility gene because of its function as a key DNA damage signal transducer. We analyzed the prevalence of known Finnish A-T related ATM mutations in large series of familial and unselected breast cancer cases from different geographical regions in Finland. Of the seven A-T related mutations, two were observed in the studied familial breast cancer patients. Additionally, a third mutation previously associated with breast cancer susceptibility was also detected. These founder mutations may be responsible for excess familial breast cancer regionally in Northern and Central Finland, but in Southern Finland our results suggest only a minor effect, if any, of any ATM genetic variants on familial breast cancer. We also screened the entire coding region of the ATM gene in 47 familial breast cancer patients from Southern Finland, and evaluated the identified variants in additional cases and controls. All the identified variants were too rare to significantly contribute to breast cancer susceptibility. However, the role of ATM in cancer development and progression was supported by the results of the immunohistochemical studies of ATM expression, as reduced ATM expression in breast carcinomas was found to correlate with tumor differentiation and hormone receptor status. Aberrant ATM expression was also a feature shared by the BRCA1/2 and the difficult-to-treat ER/PR/ERBB2-triple-negative breast carcinomas. From the clinical point of view, identification of phenotypic and genetic similarities between the BRCA1/2 and the triple-negative breast tumors could have an implication in designing novel targeted therapies to which both of these classes of breast cancer might be exceptionally sensitive. Mutations of another plausible breast cancer susceptibility gene, RAD50, were found to be very rare, and RAD50 can only be making a minor contribution to familial breast cancer predisposition in UK and Southern Finland. The Finnish founder mutation RAD50 687delT seems to be a null allele and may carry a small increased risk of breast cancer. RAD50 is not acting as a classical tumor suppressor gene, but it is possible that RAD50 haploinsufficiency is contributing to cancer. In addition to relatively rare breast cancer susceptibility alleles, common polymorphisms may also be associated with increased breast cancer risk. Furthermore, these polymorphisms may have an impact on the progression and outcome of the disease. Our results suggest no effect of the common p53 R72P polymorphism on familial breast cancer risk or breast cancer risk in the population, but R72P seems to be associated with histopathologic features of the tumors and survival of the patients; 72P homozygous genotype was an independent prognostic factor among the unselected breast cancer patients, with a two-fold increased risk of death. These results present important novel findings also with clinical significance, as codon 72 genotype could be a useful additional prognostic marker in breast cancer, especially among the subgroup of patients with wild-type p53 in their tumors.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The neurotransmitter serotonin (5-HT) modulates many functions important for life, e.g., appetite and body temperature, and controls development of the neural system. Disturbed 5-HT function has been implicated in mood, anxiety and eating disorders. The serotonin transporter (SERT) controls the amount of effective 5-HT by removing it from the extracellular space. Radionuclide imaging methods single photon emission tomography (SPET) and positron emission tomography (PET) enable studies on the brain SERTs. This thesis concentrated on both methodological and clinical aspects of the brain SERT imaging using SPET. The first study compared the repeatability of automated and manual methods for definition of volumes of interest (VOIs) in SERT images. The second study investigated within-subject seasonal variation of SERT binding in healthy young adults in two brain regions, the midbrain and thalamus. The third study investigated the association of the midbrain and thalamic SERT binding with Bulimia Nervosa (BN) in female twins. The fourth study investigated the association of the midbrain and hypothalamic/thalamic SERT binding and body mass index (BMI) in monozygotic (MZ) twin pairs. Two radioligands for SERT imaging were used: [123I]ADAM (studies I-III) and [123I]nor-beta-CIT (study IV). Study subjects included young adult MZ and dizygotic (DZ) twins screened from the FinnTwin16 twin cohort (studies I-IV) and healthy young adult men recruited for study II. The first study validated the use of an automated brain template in the analyses of [123I]ADAM images and proved automated VOI definition more reproducible than manual VOI definition. The second study found no systematic within-subject variation in SERT binding between scans done in summer and winter in either of the investigated brain regions. The third study found similar SERT binding between BN women (including purging and non-purging probands), their unaffected female co-twins and other healthy women in both brain regions; in post hoc analyses, a subgroup of purging BN women had significantly higher SERT binding in the midbrain as compared to all healthy women. In the fourth study, MZ twin pairs were divided into twins with higher BMI and co-twins with lower BMI; twins with higher BMI were found to have higher SERT binding in the hypothalamus/thalamus than their leaner co-twins. Our results allow the following conclusions: 1) No systematic seasonal variation exists in the midbrain and thalamus between SERT binding in summer and winter. 2) In a population-based sample, BN does not associate with altered SERT status, but alterations are possible in purging BN women. 3) The higher SERT binding in MZ twins with higher BMIs as compared to their leaner co-twins suggests non-genetic association between acquired obesity and the brain 5-HT system, which may have implications on feeding behavior and satiety.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Acute pancreatitis (AP) is a common disease. Mild disease resolves spontaneously in a few days. Severe forms of the disease can lead to local complications, necrosis, and abscesses in and around the pancreas. Systemic inflammation in severe AP is associated with distant organ failures. The aim of this study is to identify genetically determined prognostic factors involved in the clinical features of AP. The study employs a candidate-gene approach, and the genes are involved in trysinogen activation in the initiation phase of the disease, as well as in the systemic inflammation as the disease proceeds. The last study examines adipokines, fat-derived hormones characterized with the capacity to modify inflammation. SPINK 1 is a gene coding trypsin activation inhibitor. Mutations N34S and P55N were determined by minisequencing methods in 371 AP patients and in 459 controls. The mutation N34S was more common in AP patients (7.8%) than in controls (2.6%). This suggests that SPINK 1 gene mutation N34S is a risk factor for AP. In the fourth study, in 12 matched pairs of patients with severe and mild AP, levels of adipokines, adiponectin, and leptin were evaluated. Plasma adipokine levels did not differ between patients with mild and severe AP. The results suggest that in AP, adipokine plasma levels are not factors predisposing to organ failures. This study identified the SPINK 1 mutation N34S to be a risk factor for AP in the general population. As AP is a multifactorial disease, and extensive genetic heterogeneity is likely, further identification of genetic factors in the disease requires larger future studies with more advanced genetic study models. Further identification of the patient characteristics associated with organ failures offers another direction of the study to achieve more detailed understanding of the severe form of AP.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The brain's functional network exhibits many features facilitating functional specialization, integration, and robustness to attack. Using graph theory to characterize brain networks, studies demonstrate their small-world, modular, and "rich-club" properties, with deviations reported in many common neuropathological conditions. Here we estimate the heritability of five widely used graph theoretical metrics (mean clustering coefficient (γ), modularity (Q), rich-club coefficient (ϕnorm), global efficiency (λ), small-worldness (σ)) over a range of connection densities (k=5-25%) in a large cohort of twins (N=592, 84 MZ and 89 DZ twin pairs, 246 single twins, age 23±2.5). We also considered the effects of global signal regression (GSR). We found that the graph metrics were moderately influenced by genetic factors h2 (γ=47-59%, Q=38-59%, ϕnorm=0-29%, λ=52-64%, σ=51-59%) at lower connection densities (≤15%), and when global signal regression was implemented, heritability estimates decreased substantially h2 (γ=0-26%, Q=0-28%, ϕnorm=0%, λ=23-30%, σ=0-27%). Distinct network features were phenotypically correlated (|r|=0.15-0.81), and γ, Q, and λ were found to be influenced by overlapping genetic factors. Our findings suggest that these metrics may be potential endophenotypes for psychiatric disease and suitable for genetic association studies, but that genetic effects must be interpreted with respect to methodological choices.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The prevalence and the causes of childhood visual impairment in Finland during the 1970s and the 1980s were investigated, with special attention to risk factors and further prevention of visual impairment in children. The primary data on children with visual impairment were obtained from the Finnish Register of Visual Impairment, one of the patient registers kept up by the National Research and Development Centre for Welfare and Health (Stakes). The data were supplemented from other registers in Stakes and from patient records of the children in Finnish central hospitals. Visual impairment had been registered in 556 children from a population of 1,138,326 children between ages 0-17, born from 1972 through 1989. The age-specific prevalence of registered visual impairment was 49/100,000 in total. Of them, 23/100,000 were blind children and 11/100,000 were children born prematurely. Boys were impaired more often and more severely than girls. Congenital malformations (52%), systemic diseases (48%), and multiple impairments (50%) were common. The main ophthalmic groups of visual impairment were retinal diseases (35%), ocular malformations (29%), and neuro-ophthalmological disorders (29%). Optic nerve atrophy was the most common diagnosis of visual impairment (22%), followed by congenital cataract (11%), retinopathy of prematurity (10%), and cerebral visual impairment (8%). Genetic factors (42%) were the most common etiologies of visual impairment, followed by prenatal (30%) and perinatal (21%) factors. The highest rates of blindness were seen in cerebral visual impairment (83%) and retinopathy of prematurity (82%). Retinopathy of prematurity had developed in the children born at a gestational age of 32 weeks or earlier. Significant risks for visual impairment were found in the association with preterm births, prenatal infections, birth asphyxia, neonatal respiratory difficulties, mechanical ventilation lasting over two weeks, and hyperbilirubinemia. A rise in blind and multi-impaired children was seen during the study period, associating with increases in the survival of preterm infants with extremely low birth weight. The incidence of visual impairment in children born prematurely was seven times higher than in children born at full term. A reliable profile of childhood visual impairment was obtained. The importance of highly qualified antenatal, neonatal, and ophthalmological care was clearly proved. The risks associated with pre- and perinatal disorders during pregnancy must be emphasized, e.g. the risks associated with maternal infections and the use of tobacco, alcohol, and drugs during pregnancy. Obvious needs for gene therapies and other new treatments for hereditary diseases were also proved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Multiple sclerosis (MS) is the most common cause of neurological disability in young adults, affecting more than two million people worldwide. It manifests as a chronic inflammation in the central nervous system (CNS) and causes demyelination and neurodegeneration. Depending on the location of the demyelinated plaques and axonal loss, a variety of symptoms can be observed including deficits in vision, coordination, balance and movement. With a typical age of onset at 20-40 years, the social and economic impacts of MS on lives of the patients and their families are considerable. Unfortunately the current treatments are relatively inefficient and the development of more effective treatments has been impeded by our limited understanding of the causes and pathogenesis of MS. Risk of MS is higher in biological relatives of MS patients than in the general population. Twin and adoption studies have shown that familial clustering of MS is explained by shared genetic factors rather than by shared familial environment. While the involvement of the human leukocyte antigen (HLA) genes was first discovered four decades ago, additional genetic risk factors have only recently been identified through genome-wide association studies (GWAS). Current evidence suggests that MS is a highly polygenic disease with perhaps hundreds of common variants with relatively modest effects contributing to susceptibility. Despite extensive research, the majority of these risk factors still remain to be identified. In this thesis the aim was to identify novel genes and pathways involved in MS. Using genome-wide microarray technology, gene expression levels in peripheral blood mononuclear cells (PBMC) from 12 MS patients and 15 controls were profiled and more than 600 genes with altered expression in MS were identified. Three of five selected findings, DEFA1A3, LILRA4 and TNFRSF25, were successfully replicated in an independent sample. Increased expression of DEFA1A3 in MS is a particularly interesting observation, because its elevated levels have previously been reported also in several other autoimmune diseases. A systematic review of seven microarray studies was then performed leading to identification of 229 genes, in which either decreased or increased expression in MS had been reported in at least two studies. In general there was relatively little overlap across the experiments: 11 of the 229 genes had been reported in three studies and only HSPA1A in four studies. Nevertheless, these 229 genes were associated with several immunological pathways including interleukin pathways related to type 2 and type 17 helper T cells and regulatory T cells. However, whether these pathways are involved in causing MS or related to secondary processes activated after disease onset remains to be investigated. The 229 genes were also compared with loci identified in published MS GWASs. Single nucleotide polymorphisms (SNP) in 17 of the 229 loci had been reported to be associated with MS with P-value less than 0.0001 including variants in CXCR4 and SAPS2, which were the only loci where evidence for correlation between the associated variant and gene expression was found. The CXCR4 variant was further tested for association with MS in a large case-control sample and the previously reported suggestive association was replicated (P-value is 0.0004). Finally, common genetic variants in candidate genes, which had been selected on the basis of showing association with other autoimmune diseases (MYO9B) or showing differential expression in MS in our study (DEFA1A3, LILRA4 and TNFRSF25), were tested for association with MS, but no evidence of association was found. In conclusion, through a systematic review of genome-wide expression studies in MS we have identified several promising candidate genes and pathways for future studies. In addition, we have replicated a previously suggested association of a SNP variant upstream of CXCR4 with MS. Keywords: autoimmune disease, common variant, CXCR4, DEFA1A3, HSPA1A,gene expression, genetic association, GWAS, MS, multiple sclerosis, systematic review

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In many countries, the prevalence of smoking and smokers average cigarette consumption have decreased, with occasional smoking and daily light smoking (1-4 cigarettes per day, CPD) becoming more common. Despite these changes in smoking patterns, the prevalence of chronic obstructive pulmonary disease (COPD), a disorder characterized by a progressive decline in lung function, continues to rise globally. Smoking is the most important factor causing COPD, however, not all smokers develop the disease. Genetic factors partly explain the inter-individual differences in lung function and susceptibility of some smokers to COPD. No earlier research on the genetic and environmental determinants of lung function or on the phenomenon of light smoking exists in the Finnish population. Further, the association between low-rate smoking patterns and COPD remains partly unknown. This thesis aimed to study the prevalence and consistency of light smoking longitudinally in the Finnish population, to assess the characteristics of light smokers, and to examine the risks of chronic bronchitis and COPD associated with changing smoking patterns over time. A further aim was to estimate longitudinally the proportions of genetic and environmental factors that explain the inter-individual variances in lung function. Data from the Older Finnish Twin Cohort, including same-sex twin pairs born in Finland before 1958, were used. Smoking patterns and chronic bronchitis symptoms were consistently assessed in surveys conducted in 1975, 1981, and 1990. National registry data on reimbursement eligibilities and medication purchases were used to define COPD. Lung function data were obtained from a subsample of the cohort, 217 female twin pairs, who attended spirometry in 2000 and 2003 as part of the Finnish Twin Study on Ageing. The genetic and environmental influences on lung function were estimated by using genetic modeling. This thesis found that light smokers are more often female, well-educated, and exhibit a healthier lifestyle than heavy smokers. At individual level, light smoking is rarely a constant pattern. Light smoking, reducing from heavier smoking to light smoking, and relapsing to light smoking after quitting, are among patterns associated with an increased risk of chronic bronchitis and COPD. Constant light smoking is associated with an increased use of inhaled anticholinergics, a medication for CODP. In addition to smoking, other environmental factors influence lung function in the older age. During a three-year follow-up, new environmental effects influencing spirometry values were observed, whereas the genes affecting lung function remained mostly the same. In conclusion, no safe level of daily smoking exists with regard to pulmonary diseases. Even daily light smoking in middle-age is associated with increased respiratory morbidity later in life. Smoking reduction does not decrease the risk of COPD, and should not be recommended as an alternative to quitting smoking. In elderly people, attention should also be drawn to other factors that can prevent poor lung function.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

ABSTRACT Idiopathic developmental disorders (DDs) affect ~1% of the population worldwide. This being a considerable amount, efforts are being made to elucidate the disease mechanisms. One or several genetic factors cause 30-40% of DDs, and only 10% are caused by environmental factors. The remaining 50% of DD patients go undiagnosed, mostly due to a lack of diagnostic techniques. The cause in most undiagnosed cases is though to be a genetic factor or a combination of genetic and environmental factors. Despite the surge of new technologies entering the market, their implementation into diagnostic laboratories is hampered by costs, lack of information about the expected diagnostic yield, and the wide range of selection. This study evaluates new microarray methods in diagnosing idiopathic DDs, providing information about their added diagnostic value. Study I analysed 150 patients by array comparative genomic hybridization (array CGH, 44K and 244K), with a subsequent 18% diagnostic yield. These results are supported by other studies, indicating an enourmous added diagnostic value of array CGH, compared with conventional cytogenetic analysis. Nevertheless, 80% of the patients remained undiagnosed in Study I. In an effort to diagnose more patients, in Study IV the resolution was increased from 8.9 Kb of the 244K CGH array to 0.7 Kb, by using a single-nucleotide polymorphism (SNP) array. However, no additional pathogenic changes were detected in the 35 patients assessed, and thus, for diagnostic purposes, an array platform with ca 9 Kb resolution appears adequate. The recent vast increase in reports of detected aberrations and associated phenotypes has enabled characterization of several new syndromes first based on a common aberration and thereafter by delineation of common clinical characteristics. In Study II, a familial deletion at 9q22.2q22.32 with variable penetrance was described. Despite several reports of aberrations in the adjacent area at 9q associated with Gorlin syndrome, the patients in this family had a unique phenotype and did not present with the syndrome. In Study III, a familial duplication of chromosome 6p22.2 was described. The duplication caused increased expression of an important enzyme of the γ-aminobutyric acid (GABA) degradation pathway, causing oxidative stress of the brain, and thus, very likely, the mild mental retardation of these patients. These two case studies attempted to pinpoint candidate genes and to resolve the pathogenic mechanism causing the clinical characteristics of the patients. Presenting rare genetic and clinical findings to the international science and medical community enables interpretation of similar findings in other patients. The added value of molecular karyotyping in patients with idiopathic DD is evident. As a first line of testing, arrays with a median resolution of at least 9 Kb should be considered and further characterization of detected aberrations undertaken when possible. Diagnostic whole-exome sequencing may be the best option for patients who remain undiagnosed after high-resolution array analysis.