953 resultados para Non-functional properties
Resumo:
The metalloprotease meprin has been implicated in tissue remodelling due to its capability to degrade extracellular matrix components. Here, we investigated the susceptibility of tenascin-C to cleavage by meprin beta and the functional properties of its proteolytic fragments. A set of monoclonal antibodies against chicken and human tenascin-C allowed the mapping of proteolytic fragments generated by meprin beta. In chicken tenascin-C, meprin beta processed all three major splicing variants by removal of 10 kDa N-terminal and 38 kDa C-terminal peptides, leaving a large central part of subunits intact. IN similar cleavage pattern was found for large human tenascin-C variant where two N-terminal peptides (10 or 15 kDa) and two C-terminal fragments (40 and 55 kDa) were removed from the intact subunit. N-terminal sequencing revealed the exact amino acid positions of cleavage sites. In both chicken and human tenascin-C N-terminal cleavages occurred just before and/or after the heptad repeats involved in subunit oligomerization. In the human protein, an additional cleavage site was identified in the alternative fibronectin type III repeat D. Whereas all these sites are known to be attacked by several other proteases, a unique cleavage by meprin beta was located to the 7th constant fibronectin type III repeat in both chicken and human tenascin-C, thereby removing the C-terminal domain involved in its anti-adhesive activity. In cell adhesion assays meprin beta-digested human tenascin-C was not able to interfere with fibronectin-mediated cell spreading, confirming cleavage in the anti-adhesive domain. Whereas the expression of meprin beta and tenascin-C does not overlap in normal colon tissue, inflamed lesions of the mucosa from patients with Crohn's disease exhibited many meprin beta-positive leukocytes in regions where tenascin-C was strongly induced. Our data indicate that, at least under pathological conditions, meprin beta might attack specific functional sites in tenascin-C that are important for its oligomerization and anti-adhesive activity. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
Chemosensation is the detection of chemical signals in the environment that enable an animal to make informed decisions about food choice, mate preference or predator detection. Dissecting the molecular and neural mechanisms by which animals detect chemical cues is an important goal towards understanding how they interact with the environment. An attractive system to dissect the mechanisms of chemosensation is the olfactory system. One of the most-investigated olfactory systems is that of Drosophila melanogaster, a model organism that is amenable to a powerful combination of genetic and physiological analyses. Embedded within the antennal olfactory organ of Drosophila is an unusual sensory structure called the sacculus. The sacculus is comprised of three distinct chambers, each lined with several sensilla housing two to three neurons. Previous morphological, anatomical and surgical studies of sacculus neurons have implicated sacculus neurons in chemosensation, hygrosensation and/or thermosensation. While a subset of sacculus neurons have been physiologically characterised as temperature sensors, the role of this organ has remained largely mysterious, due to its inaccessibility to peripheral electrophysiological analysis. Recently a new family of olfactory receptors, the lonotropic Receptors (IRs), was identified. Five IRs are expressed in sacculus neurons providing the first selective molecular markers for these cells. In this thesis I describe the molecular, physiological and anatomical characterisation of these neurons. Genetic labelling of specific populations of sacculus neurons with anatomical (CD8:GFP) reporters has identified neurons in sacculus chambers I and II express IR40a+IR93a together with their co- receptor IR25a, while neurons in chamber III express IR64a with its co-receptor IR8a. Both these sets of neurons project to two distinct glomeruli in the antennal lobe; IR40a neurons project to the column and arm, IR64a neurons project to DC4 and DP1m. Through a live optical imaging screen I showed that these neurons are indeed olfactory and IR64a neurons recognise acidic ligands, while IR40a neurons recognise amine ligands. IR40a and IR64a neurons are in fact composed of anatomically and physiologically distinct subpopulations, strongly implying the existence of other factors that define their functional properties. My thesis identifies the sacculus as a specialised olfactory organ capable of detecting acids and bases, which are of widespread importance to insects. The data from my thesis along with data from other labs show the sacculus is composed of different populations of olfactory sensory neurons and thermosensory neurons. Comparative genomic analysis of sacculus IRs across insects reveals them to be among the most conserved of this receptor repertoire, suggesting that the sacculus represents an evolutionarily ancient insect olfactory acid-base sensor. - La détection des produits chimiques se trouvant dans l'environnement (perception chimiosensorielle) permet à un animal de choisir sa nourriture, son partenaire ou encore d'identifier ses prédateurs. Décortiquer les mécanismes moléculaires et neuronaux grâce auxquels les animaux détectent ces signaux chimiques permet de comprendre comment ces animaux interagissent avec leur environnement. Un système intéressant pour décortiquer ces mécanismes de perception chimiosensorielle est le système olfactif, de la drosophile (Drosophila melanogaster), aussi appelée mouche du vinaigre. C'est un animal modèle très utile grâce à la combinaison d'outils génétiques puissants et d'analyses physiologiques facilement réalisables. Dans l'antenne de la drosophile, qui est l'organe olfactif principal de cet animal, se trouve une structure appelée sacculus. Celui-ci est composé de trois chambres distinctes, chacune comprenant plusieurs sensilles à l'intérieur desquelles se trouvent deux à trois neurones. De précédentes études morphologiques et anatomiques des ces neurones ont déterminé qu'ils sont impliqués dans la perception des odeurs, de l'humidité et de la température. Malgré ceci, la fonction principale de cet organe reste largement inconnue, principalement car il est inaccessible aux analyses électrophysiologiques. Récemment, une nouvelle famille de soixante-six récepteurs olfactifs, nommés Récepteurs lonotropiques (IRs), a été découverte chez la drosophile. Cinq IRs sont exprimés dans les neurones du sacculus. Pour la première fois, une sélection de marqueurs moléculaires est disponible pour l'étude de ces cellules. Dans cette thèse, les caractéristiques moléculaires, physiologiques et anatomiques des neurones du sacculus sont décrites. Ces populations de neurones situés dans le sacculus ont été marquées avec des gènes rapporteurs (CD8:GFP). Ceci a montré que les récepteurs IR40a et IR93a sont exprimés ensemble avec le co-récepteur IR25a dans les chambres I et II, tandis que les neurones de la chambre III expriment IR64a avec son co-récepteur IR8a. Ces deux groupes de neurones projettent vers deux glomérules distincts du lobe antennaire : les neurones IR40a projettent vers la column et le arm, alors que les neurones IR64a projettent vers DC4 et DP1m. Un screen d'imagerie optique a démontré que ces neurones sont en effet des neurones olfactifs, et que les neurones IR64a reconnaissent des ligands acides, tandis que les neurones IR40a reconnaissent des ligands aminés. De plus, les neurones IR40a et IR64a sont séparés en sous-populations distinctes anatomiquement et physiologiquement, et d'autres facteurs permettant de définir leurs propriétés fonctionnelles sont probablement impliqués. Cette thèse identifie ainsi le sacculus comme un organe olfactif spécialisé capable de détecter des acides et amines, lesquels sont très importants pour les insectes. Toutes les données collectées durant cette thèse, combinées aux données d'autres laboratoires, montrent que le sacculus est composé de différentes populations de neurones olfactifs et thermosenseurs. Ces IRs sont très conservés parmi les insectes, suggérant que le sacculus représente révolution d'un ancien détecteur olfactif d'acides et de bases chez l'insecte. - Tous les animaux sont capables de percevoir les signaux chimiques dans leur environnement, comme les odeurs ou le goût, via différents organes. L'odorat est le sens qui permet de percevoir les odeurs, et il est implique des neurones olfactifs qui se trouvent dans le nez des mammifères ou les antennes des insectes. La capacité d'un neurone olfactif à détecter une molécule odorante dépend des types de récepteurs olfactifs qu'il exprime. Il existe deux grandes familles de récepteurs qui perçoivent les odeurs : les Récepteurs Olfactifs, ORs, et Récepteurs lonotropiques IRs, qui détectent différents types d'odeurs avec différents mécanismes. Lorsqu'un récepteur reconnaît une molécule odorante, il convertit ce signal en un signal électrique qui est ensuite transmis au centre olfactif dans le cerveau. La drosophile (Drosophila melanogaster), aussi appelée mouche du vinaigre, est utilisée comme animal modèle pour étudier l'odorat, parce que son génome entier a été séquencé et que ses gènes sont facilement manipulables. De plus, l'anatomie du système olfactif de la mouche est similaire à celui des mammifères, malgré qu'il possède moins de neurones, ce qui le rend moins complexe. Ma thèse a pour objectif d'étudier les Récepteurs lonotropiques dans un organe spécifique, appelé le sacculus, situé dans les antennes. Les neurones du sacculus exprimant des IRs envoient leurs projections au centre olfactif du cerveau, suggérant que ces neurones perçoivent les odeurs. Une technique d'imagerie optique a été utilisée sur le cerveau de mouches vivantes afin de mesurer la réponse des neurones du le sacculus à différentes odeurs. J'ai démontré que ces récepteurs détectent des acides et des amines, qui sont très importants pour les insectes. Par exemple, les acides se retrouvent dans les fruits mûrs sur lesquels les mouches vont se nourrir, s'accoupler et poser leurs oeufs, et les amines sont souvent produites par des bactéries pouvant être nuisible pour la mouche. La principale découverte de ma thèse est donc l'identification du sacculus comme un organe capable de détecter deux des principales odeurs importantes pour la mouche. Ces récepteurs sont aussi présents dans d'autres insectes où ils jouent peut-être des rôles différents. Les acides et les amines se retrouvent aussi dans les excrétions (comme la sueur ou l'urine) de beaucoup de mammifères, qui pourraient potentiellement être dangereux pour la mouche, mais qui attirent les moustiques se nourrissant de leur sang.
Resumo:
Pancreatic neuroendocrine tumors (pNETs) are infrequent malignancies which manifest in both functional (hormone-secreting) and more commonly non-functional (non-secreting) forms. The oral multitargeted tyrosine kinase inhibitor sunitinib and mammalian target of rapamycin (mTOR) inhibitor everolimus are approved as targeted therapies for patients with well-differentiated, non-resectable disease and evidence of disease progression. The recent approval of sunitinib for the management of advanced pNET is based on a continuous daily dosing (CDD) schedule that differs from the intermittent 4weeks on/2weeks off (4/2) schedule approved for sunitinib in advanced renal cell carcinoma (RCC) and imatinib-resistant gastrointestinal stromal tumor (GIST). Therefore, although clinicians may be familiar with therapy management approaches for sunitinib in advanced RCC and GIST, there is less available experience for the management of patients with a CDD schedule. Here, we discuss the similarities and differences in the treatment of pNET with sunitinib compared with advanced RCC and GIST. In particular, we focus on the occurrence and management of sunitinib-related toxicity in patients with pNET by drawing on experience in these other malignancies. We aim to provide a relevant and useful guide for clinicians treating patients with pNET covering the management of events such as fatigue, mucositis, hand-foot syndrome, and hypertension.
Resumo:
The effector response of natural killer (NK) cells is determined by opposing signals received through activating and inhibitory receptors. A process termed NK cell education, which is guided by the recognition of Major Histocompatibility Complex class I (MHC-I) molecules, determines how efficiently activating receptors respond to stimulation. This ensures NK cell tolerance to healthy tissues while allowing robust responses to diseased host cells. It was thought that NK cells are educated during their development in the bone marrow and that education fixes the NK cells' functional properties. However, recent findings suggest that the function of mature peripheral NK cells can adapt to changes in their environment and that the persistent exposure to normal-self is essential to maintain NK cell reactivity. Notwithstanding, NK cell stimulation in the context of inflammation can stably improve the functional properties of NK cells.
Resumo:
Purpose/Objective: Phenotypic and functional T cell properties are usually analyzed at the level of defined cell populations. However, large differences between individual T cells may have important functional consequences. To answer this issue, we performed highly sensitive single-cell gene expression profiling, which allows the direct ex vivo characterization of individual virus- and tumor-specific T cells from healthy donors and melanoma patients. Materials and methods: HLA-A*0201-positive patients with stage III/ IV metastatic melanoma were included in a phase I clinical trial (LUD- 00-018). Patients received monthly low-dose of the Melan-AMART- 1 26_35 unmodified natural (EAAGIGILTV) or the analog A27L (ELAGIGILTV) peptides, mixed CPG and IFA. Individual effector memory CD28+ (EM28+) and EM28- tetramer-specific CD8pos T cells were sorted by flow cytometer. Following direct cell lysis and reverse transcription, the resulting cDNA was precipitated and globally amplified. Semi-quantitative PCR was used for gene expression and TCR BV repertoire analyses. Results: We have previously shown that vaccination with the natural Melan-A peptide induced T cells with superior effector functions as compared to the analog peptide optimized for enhanced HLA binding. Here we found that natural peptide vaccination induced EM28+ T cells with frequent co-expression of both memory/homing-associated genes (CD27, IL7R, EOMES, CXCR3 and CCR5) and effector-related genes (IFNG, KLRD1, PRF1 and GZMB), comparable to protective EBV- and CMV-specific T cells. In contrast, memory/homing- and effectorassociated genes were less frequently co-expressed after vaccination with the analog peptide. Conclusions: These findings reveal a previously unknown level of gene expression diversity among vaccine- and virus-specific T cells with the simultaneous co-expression of multiple memory/homing- and effector- related genes by the same cell. Such broad functional gene expression signatures within antigen-specific T cells may be critical for mounting efficient responses to pathogens or tumors. In summary, direct ex vivo high-resolution molecular characterization of individual T cells provides key insights into the processes shaping the functional properties of tumor- and virus-specific T cells.
Resumo:
Purpose: We report an unusual appearance of fundus autofluorescence (FAF) associated with NR2E3-p.G56R-linked autosomal dominant retinitis pigmentosa (ADRP).Methods: Patients were enrolled among three generations in a Swiss family. Molecular diagnosis identified a c.166G>A (p.G56R) mutation. Ophthalmic examination included fundus photography, FAF, near-infrared autofluorescence (NIA), optical coherence tomography (OCT) and visual fields (VF).Results: Fundus examination revealed a wide range of features from unremarkable to attenuated arterial caliber, clumped and spicular pigment deposits in the mid-periphery and optic nerve pallor. FAF showed a double concentric hyperautofluorescent ring: an inner perimacular ring which tended to be smaller in older patients, and an outer ring located along the vascular arcades, which appeared to extend over time towards the periphery and eventually became hypoautofluorescent. The inner and outer hyperautofluorescent rings were seen both on NIA and FAF at a similar localization. There was also a spatial correspondence between the loss of photoreceptor inner segment and outer segment junction on OCT and the area delimited by both double FAF and NIA rings. VF showed either midperipheral annular scotoma or constricted visual field loss in advanced cases, correlating with dystrophic non-functional retinal regions demarcated by the hyperautofluorescent annuli. A double ring of hyperautofluorescence was observed in all but one patient of two additional families, but not in patients harboring mutations in other ADRP genes, including PRPF3, RHO, RP1, PRPH2, PROM1 and CTRP5.Conclusions: The presence of a double concentric hyperautofluorescent ring of FAF may represent a highly penetrant early phenotypic marker of NR2E3-p.G56R-linked ADRP.
Resumo:
Ion imaging is a powerful methodology to assess fundamental biological processes in live cells. The limited efficiency of some ion-sensing probes and their fast leakage from cells are important restrictions to this approach. In this study, we present a novel strategy based on the use of dendrimer nanoparticles to obtain better intracellular retention of fluorescent probes and perform prolonged fluorescence imaging of intracellular ion dynamics. A new sodium-sensitive nanoprobe was generated by encapsulating a sodium dye in a PAMAM dendrimer nanocontainer. This nanoprobe is very stable and has high sodium sensitivity and selectivity. When loaded in neurons in live brain tissue, it homogenously fills the entire cell volume, including small processes, and stays for long durations, with no detectable alterations of cell functional properties. We demonstrate the suitability of this new sodium nanosensor for monitoring physiological sodium responses such as those occurring during neuronal activity.
Resumo:
Background: Systematic approaches for identifying proteins involved in different types of cancer are needed. Experimental techniques such as microarrays are being used to characterize cancer, but validating their results can be a laborious task. Computational approaches are used to prioritize between genes putatively involved in cancer, usually based on further analyzing experimental data. Results: We implemented a systematic method using the PIANA software that predicts cancer involvement of genes by integrating heterogeneous datasets. Specifically, we produced lists of genes likely to be involved in cancer by relying on: (i) protein-protein interactions; (ii) differential expression data; and (iii) structural and functional properties of cancer genes. The integrative approach that combines multiple sources of data obtained positive predictive values ranging from 23% (on a list of 811 genes) to 73% (on a list of 22 genes), outperforming the use of any of the data sources alone. We analyze a list of 20 cancer gene predictions, finding that most of them have been recently linked to cancer in literature. Conclusion: Our approach to identifying and prioritizing candidate cancer genes can be used to produce lists of genes likely to be involved in cancer. Our results suggest that differential expression studies yielding high numbers of candidate cancer genes can be filtered using protein interaction networks.
Resumo:
OBJECTIVE: A distinct subset of proinflammatory CD4+ T cells that produce interleukin-17 was recently identified. These cells are implicated in different autoimmune disease models, such as experimental autoimmune encephalomyelitis and collagen-induced arthritis, but their involvement in human autoimmune disease has not yet been clearly established. The purpose of this study was to assess the frequency and functional properties of Th17 cells in healthy donors and in patients with different autoimmune diseases. METHODS: Peripheral blood was obtained from 10 psoriatic arthritis (PsA), 10 ankylosing spondylitis (AS), 10 rheumatoid arthritis (RA), and 5 vitiligo patients, as well as from 25 healthy donors. Synovial tissue samples from a separate group of patients were also evaluated (obtained as paraffin-embedded sections). Peripheral blood cells were analyzed by multiparameter flow cytometry and immunohistochemistry. Cytokine production was examined by enzyme-linked immunosorbent assay and intracellular cytokine staining using specific monoclonal antibodies. Synovial tissue was examined for infiltrating T cells by immunohistochemical analysis. RESULTS: We found increased numbers of circulating Th17 cells in the peripheral blood of patients with seronegative spondylarthritides (PsA and AS), but not in patients with RA or vitiligo. In addition, Th17 cells from the spondylarthritis patients showed advanced differentiation and were polyfunctional in terms of T cell receptor-driven cytokine production. CONCLUSION: These observations suggest a role of Th17 cells in the pathogenesis of certain human autoimmune disorders, in particular the seronegative spondylarthritides.
Resumo:
In the present study, we have investigated the distribution of HIV-specific and HIV-infected CD4 T cells within different populations of memory CD4 T cells isolated from lymph nodes of viremic HIV-infected subjects. Four memory CD4 T cell populations were identified on the basis of the expression of CXCR5, PD-1, and Bcl-6: CXCR5(-)PD-1(-)Bcl-6(-), CXCR5(+)PD-1(-)Bcl-6(-), CXCR5(-)PD-1(+)Bcl-6(-), and CXCR5(+)PD-1(+)Bcl-6(+). On the basis of Bcl-6 expression and functional properties (IL-21 production and B cell help), the CXCR5(+)PD-1(+)Bcl-6(+) cell population was considered to correspond to the T follicular helper (Tfh) cell population. We show that Tfh and CXCR5(-)PD-1(+) cell populations are enriched in HIV-specific CD4 T cells, and these populations are significantly increased in viremic HIV-infected subjects as compared with healthy subjects. The Tfh cell population contained the highest percentage of CD4 T cells harboring HIV DNA and was the most efficient in supporting productive infection in vitro. Replication competent HIV was also readily isolated from Tfh cells in subjects with nonprogressive infection and low viremia (<1,000 HIV RNA copies). However, only the percentage of Tfh cells correlated with the levels of plasma viremia. These results demonstrate that Tfh cells serve as the major CD4 T cell compartment for HIV infection, replication, and production.
Resumo:
Aim: The management of large lesions of the skull base, such as vestibular schwanommas (VS), meningiomas (MEN) or pituitary adenomas (PA), is challenging, with microsurgery remaining the main treatment option. Planned subtotal resection is now being increasingly considered to reduce the risk of neurological deficits following complete resection. The residual part of the tumor can then be treated with Gamma Knife Radiosurgery (GKR) to achieve long-term growth control. Methods: This case series documents early results with planned subtotal resection followed by GKR in Lausanne University Hospital, between July 2010 and March 2012. There were 24 patients who underwent surgery, with 22 having already undergone GKR and 2 waiting for GKR. We analyzed clinical symptoms for all patients, as well as audiograms, ophthalmological and endocrinological tests, when indicated. Results: Nine patients had VS surgery (mean diameter 35 mm; range 30-44.5) through a retrosigmoid approach. There were no post-operative facial nerve deficits. Of the 3 patients whom had useful hearing pre-operatively, this improved in 2 and remained stable in 1. Four patients with clinoid MEN (mean diameter 26.5 mm; range 17-42) underwent subtotal resection of the tumor, and the component in the cavernous sinus was later treated with GKR. The visual status remained stable in 3 patients and one had complete visual recovery. 4 patients underwent subtotal resection of petro-clival MEN (mean diameter 36 mm; range 32-42): 3 had House-Brackmann (HB) grade 2 facial function that recovered completely; one continues to have HB grade 4 facial deficit following surgery. Of the 7 patients with PA (mean diameter 34.5 mm; range 20-54.5), 2 had acromegaly, the others were non functional PA. Six patients underwent trans-sphenoidal surgery, while one patient had a transcavernous sinus resection of the tumor (with prior staged trans-sphenoidal surgery). Visual status improved in 3 patients while the others remained stable. Two patients had transient diabetes insipidus following surgery. Up to now, no additional deficit or worsening has been reported after GKR. Conclusions: Our data suggest that planned subtotal resection has an excellent clinical outcome with respect to preservation of cranial nerves, and other neurological functions, and a good possibility of recovery of many of the pre-operative cranial nerve dysfunctions. The results in terms of tumor control following GKR need further long-term evaluation.
Resumo:
Epstein-Barr virus (EBV)-infected B cells with Reed-Sternberg-like cell (RS) features may occur in peripheral T-cell lymphomas (PTCLs), especially in angioimmunoblastic T-cell lymphoma. Here, we report 5 patients presenting with lymphadenopathy whose first biopsies demonstrated nodular lymphoid proliferations containing scattered CD30, CD15, EBV Hodgkin and Reed-Sternberg-like cells, which led to an initial diagnosis of lymphocyte-rich classical Hodgkin lymphoma. However, the uncommon clinical features and/or the occurrence of relapse as PTCL prompted review of the biopsies with expanded immunohistologic and molecular studies and revision of the diagnoses to follicular variant of PTCL (F-PTCL). All cases had atypical small to medium-sized CD3 T cells that expressed CD10 (4/5) and the follicular helper T-cell (TFH) antigens BCL6, PD1, CXCL13, and ICOS. All demonstrated clonal T cells with a similar pattern in multiple samples from 4 patients. In 2 cases, flow cytometry demonstrated circulating lymphocytes with an abnormal sCD3, CD4, ICOS immunophenotype. Two patients had a skin rash at presentation, and 1 had B symptoms. Two of the 4 patients treated with polychemotherapy are alive at 3 and 6 years after first diagnosis. These cases highlight how some F-PTCLs may closely mimic lymphocyte-rich classical Hodgkin lymphoma requiring careful assessment of the T cells before rendering the latter diagnosis. The functional properties of TFH cells might lead to the presence of EBV-positive B blasts with RS-like features in TFH-derived PTCL such as angioimmunoblastic T-cell lymphoma and F-PTCL.
Resumo:
FXYD3 (Mat-8) proteins are regulators of Na,K-ATPase. In normal tissue, FXYD3 is mainly expressed in stomach and colon, but it is also overexpressed in cancer cells, suggesting a role in tumorogenesis. We show that FXYD3 silencing has no effect on cell proliferation but promotes cell apoptosis and prevents cell differentiation of human colon adenocarcinoma cells (Caco-2), which is reflected by a reduction in alkaline phosphatase and villin expression, a change in several other differentiation markers, and a decrease in transepithelial resistance. Inhibition of cell differentiation in FXYD3-deficient cells is accompanied by an increase in the apparent Na+ and K+ affinities of Na,K-ATPase, reflecting the absence of Na,K-pump regulation by FXYD3. In addition, we observe a decrease in the maximal Na,K-ATPase activity due to a decrease in its turnover number, which correlates with a change in Na,K-ATPase isozyme expression that is characteristic of cancer cells. Overall, our results suggest an important role of FXYD3 in cell differentiation of Caco-2 cells. One possibility is that FXYD3 silencing prevents proper regulation of Na,K-ATPase, which leads to perturbation of cellular Na+ and K+ homeostasis and changes in the expression of Na,K-ATPase isozymes, whose functional properties are incompatible with Caco-2 cell differentiation.
Resumo:
In humans, the pathways of memory and effector T cell differentiation remain poorly defined. We have dissected the functional properties of ex vivo effector-memory (EM) CD45RA-CCR7- T lymphocytes present within the circulating CD8+ T cell pool of healthy individuals. Our studies show that EM T cells are heterogeneous and are subdivided based on differential CD27 and CD28 expression into four subsets. EM(1) (CD27+CD28+) and EM(4) (CD27-CD28+) T cells express low levels of effector mediators such as granzyme B and perforin and high levels of CD127/IL-7Ralpha. EM(1) cells also have a relatively short replicative history and display strong ex vivo telomerase activity. Therefore, these cells are closely related to central-memory (CD45RA-CCR7+) cells. In contrast, EM(2) (CD27+CD28-) and EM(3) (CD27-CD28-) cells express mediators characteristic of effector cells, whereby EM(3) cells display stronger ex vivo cytolytic activity and have experienced larger numbers of cell divisions, thus resembling differentiated effector (CD45RA+CCR7-) cells. These data indicate that progressive up-regulation of cytolytic activity and stepwise loss of CCR7, CD28, and CD27 both characterize CD8+ T cell differentiation. Finally, memory CD8+ T cells not only include central-memory cells but also EM(1) cells, which differ in CCR7 expression and may therefore confer memory functions in lymphoid and peripheral tissues, respectively.
Resumo:
A host genetic variant (-35C/T) correlates with increased human leukocyte antigen C (HLA-C) expression and improved control of HIV-1. HLA-C-mediated immunity may be particularly protective because HIV-1 is unable to remove HLA-C from the cell surface, whereas it can avoid HLA-A- and HLA-B-mediated immunity by Nef-mediated down-modulation. However, some individuals with the protective -35CC genotype exhibit high viral loads. Here, we investigated whether the ability of HIV-1 to replicate efficiently in the "protective" high-HLA-C-expression host environment correlates with specific functional properties of Nef. We found that high set point viral loads (sVLs) were not associated with the emergence of Nef variants that had acquired the ability to down-modulate HLA-C or were more effective in removing HLA-A and HLA-B from the cell surface. However, in individuals with the protective -35CC genotype we found a significant association between sVLs and the efficiency of Nef-mediated enhancement of virion infectivity and modulation of CD4, CD28, and the major histocompatibility complex class II (MHC-II)-associated invariant chain (Ii), while this was not observed in subjects with the -35TT genotype. Since the latter Nef functions all influence the stimulation of CD4(+) T helper cells by antigen-presenting cells, they may cooperate to affect both the activation status of infected T cells and the generation of an antiviral cytotoxic T-lymphocyte (CTL) response. In comparison, different levels of viremia in individuals with the common -35TT genotype were not associated with differences in Nef function but with differences in HLA-C mRNA expression levels. Thus, while high HLA-C expression may generally facilitate control of HIV-1, Nef may counteract HLA-C-mediated immune control in some individuals indirectly, by manipulating T-cell function and MHC-II antigen presentation.