952 resultados para Non-destructive testing, Seal Integrity, Packaging Quality
Resumo:
The ripening stage of apple fruits at harvest is the main factor influencing fruit quality during the cold storage period that lasts several months and give rise to physiological disorders in fruits of susceptible cultivars. In particular, superficial scald is connected to α-farnesene oxidation, leading to fruit browning. Therefore, the assessment of the optimal ripening stage at harvest is considered to be crucial to control the overall quality, the length of storage life and the scald incidence. However, the maturity indexes traditionally used in the horticultural practice do not strictly correlate with fruit maturity, and do not account for the variability occurring in the field. Hence, the present work focused on the determination of apple fruit ripening with the use of an innovative, non-destructive device, the DA-meter. The study was conducted on ‘Granny Smith’ and ‘Pink Lady’ cultivars, which differ in scald susceptibility. Pre- and post- harvest ripening behavior of the fruits was studied, and the influence of ripening stage and treatments with 1-MCP were evaluated in relation to scald development and related metabolites. IAD was shown to be a reliable indicator of apple ripening, allowing cultivar-specific predictions of the optimal harvest time in different growing seasons. IAD may also be employed to segregate apple fruits in maturity classes, requiring different storage conditions to control flesh firmness reduction and scald incidence. Moreover, 1-MCP application is extremely effective in reducing superficial scald, and its effect is influenced by fruit ripening stage reached at harvest. However, the relation between ethylene and α-farnesene was not entirely elucidated. Thus, ethylene can be involved in other oxidative processes associated with scald besides α-farnesene regulation.
Resumo:
The last half-century has seen a continuing population and consumption growth, increasing the competition for land, water and energy. The solution can be found in the new sustainability theories, such as the industrial symbiosis and the zero waste objective. Reducing, reusing and recycling are challenges that the whole world have to consider. This is especially important for organic waste, whose reusing gives interesting results in terms of energy release. Before reusing, organic waste needs a deeper characterization. The non-destructive and non-invasive features of both Nuclear Magnetic Resonance (NMR) relaxometry and imaging (MRI) make them optimal candidates to reach such characterization. In this research, NMR techniques demonstrated to be innovative technologies, but an important work on the hardware and software of the NMR LAGIRN laboratory was initially done, creating new experimental procedures to analyse organic waste samples. The first results came from soil-organic matter interactions. Remediated soils properties were described in function of the organic carbon content, proving the importance of limiting the addition of further organic matter to not inhibit soil processes as nutrients transport. Moreover NMR relaxation times and the signal amplitude of a compost sample, over time, showed that the organic matter degradation of compost is a complex process that involves a number of degradation kinetics, as a function of the mix of waste. Local degradation processes were studied with enhanced quantitative relaxation technique that combines NMR and MRI. The development of this research has finally led to the study of waste before it becomes waste. Since a lot of food is lost when it is still edible, new NMR experiments studied the efficiency of conservation and valorisation processes: apple dehydration, meat preservation and bio-oils production. All these results proved the readiness of NMR for quality controls on a huge kind of organic residues and waste.
Resumo:
STUDY DESIGN.: Cadaver study. OBJECTIVE.: To determine bone strength in vertebrae by measuring peak breakaway torque or indentation force using custom-made pedicle probes. SUMMARY OF BACKGROUND DATA.: Screw performance in dorsal spinal instrumentation is dependent on bone quality of the vertebral body. To date no intraoperative measuring device to validate bone strength is available. Destructive testing may predict bone strength in transpedicular instrumentations in osteoporotic vertebrae. Insertional torque measurements showed varying results. METHODS.: Ten human cadaveric vertebrae were evaluated for bone mineral density (BMD) measurements by quantitative computed tomography. Peak torque and indentation force of custom-made probes as a measure for mechanical bone strength were assessed via a transpedicular approach. The results were correlated to regional BMD and to biomechanical load testing after pedicle screw implementation. RESULTS.: Both methods generated a positive correlation to failure load of the respective vertebrae. The correlation of peak breakaway torque to failure load was r = 0.959 (P = 0.003), therewith distinctly higher than the correlation of indentation force to failure load, which was r = 0.690 (P = 0.040). In predicting regional BMD, measurement of peak torque also performed better than that of indentation force (r = 0.897 [P = 0.002] vs. r = 0.777 [P = 0.017]). CONCLUSION.: Transpedicular measurement of peak breakaway torque is technically feasible and predicts reliable local bone strength and implant failure for dorsal spinal instrumentations in this experimental setting.
Resumo:
Es sollen hochfeste, gewichtreduzierte Zug- und Tragmittel aus hochmodularen (HM) und hochfesten (HT) Fasern validiert und dabei sowohl runde als auch flache, riemenartige Strukturen untersucht werden. Dadurch sind effizientere Fördersysteme und die Überwindung technischer Grenzen möglich. Darüber hinaus soll das Hauptkriterium für ein breites Anwendungsspektrum geschaffen werden: ein anerkanntes, zerstörungsfreies Prüfverfahren, mit dem der Austausch- bzw. Wartungszeitpunkt des textilen Tragmittels bestimmt werden kann. Können die o. g. Punkte erfolgreich bearbeitet werden, erfolgt eine Ausdehnung der textilen Strukturen in den Bereich kraftübertragender Maschinenelemente. Anhand von Feldversuchen in fördertechnischen Anlagen im Bergbau/ Intralogistik soll erstmals der vollständige Nachweis geführt werden, dass derartige textile Strukturen in technischen Anwendungen eingesetzt werden können. Der Nachweis umfasst die Validierung einer Vielzahl von Einzelschwerpunkten wie die Entwicklung einer Endlos-Herstellungstechnologie bzw. Endverbindung, die Tragmitteldimensionierung, die Erbringung von Festigkeitsnachweisen, die Erarbeitung von Vorschriften und die Erprobung der Verfahren zur Zustandsüberwachung.
Resumo:
Wireless Mesh Networks (WMNs) are increasingly deployed to enable thousands of users to share, create, and access live video streaming with different characteristics and content, such as video surveillance and football matches. In this context, there is a need for new mechanisms for assessing the quality level of videos because operators are seeking to control their delivery process and optimize their network resources, while increasing the user’s satisfaction. However, the development of in-service and non-intrusive Quality of Experience assessment schemes for real-time Internet videos with different complexity and motion levels, Group of Picture lengths, and characteristics, remains a significant challenge. To address this issue, this article proposes a non-intrusive parametric real-time video quality estimator, called MultiQoE that correlates wireless networks’ impairments, videos’ characteristics, and users’ perception into a predicted Mean Opinion Score. An instance of MultiQoE was implemented in WMNs and performance evaluation results demonstrate the efficiency and accuracy of MultiQoE in predicting the user’s perception of live video streaming services when compared to subjective, objective, and well-known parametric solutions.
Resumo:
REACH (registration, evaluation, authorisation and restriction of chemicals) regulation requires that all the chemicals produced or imported in Europe above 1 tonne/year are registered. To register a chemical, physicochemical, toxicological and ecotoxicological information needs to be reported in a dossier. REACH promotes the use of alternative methods to replace, refine and reduce the use of animal (eco)toxicity testing. Within the EU OSIRIS project, integrated testing strategies (ITSs) have been developed for the rational use of non-animal testing approaches in chemical hazard assessment. Here we present an ITS for evaluating the bioaccumulation potential of organic chemicals. The scheme includes the use of all available data (also the non-optimal ones), waiving schemes, analysis of physicochemical properties related to the end point and alternative methods (both in silico and in vitro). In vivo methods are used only as last resort. Using the ITS, in vivo testing could be waived for about 67% of the examined compounds, but bioaccumulation potential could be estimated on the basis of non-animal methods. The presented ITS is freely available through a web tool.
Resumo:
Until today, most of the documentation of forensic relevant medical findings is limited to traditional 2D photography, 2D conventional radiographs, sketches and verbal description. There are still some limitations of the classic documentation in forensic science especially if a 3D documentation is necessary. The goal of this paper is to demonstrate new 3D real data based geo-metric technology approaches. This paper present approaches to a 3D geo-metric documentation of injuries on the body surface and internal injuries in the living and deceased cases. Using modern imaging methods such as photogrammetry, optical surface and radiological CT/MRI scanning in combination it could be demonstrated that a real, full 3D data based individual documentation of the body surface and internal structures is possible in a non-invasive and non-destructive manner. Using the data merging/fusing and animation possibilities, it is possible to answer reconstructive questions of the dynamic development of patterned injuries (morphologic imprints) and to evaluate the possibility, that they are matchable or linkable to suspected injury-causing instruments. For the first time, to our knowledge, the method of optical and radiological 3D scanning was used to document the forensic relevant injuries of human body in combination with vehicle damages. By this complementary documentation approach, individual forensic real data based analysis and animation were possible linking body injuries to vehicle deformations or damages. These data allow conclusions to be drawn for automobile accident research, optimization of vehicle safety (pedestrian and passenger) and for further development of crash dummies. Real 3D data based documentation opens a new horizon for scientific reconstruction and animation by bringing added value and a real quality improvement in forensic science.
Resumo:
During acts of physical aggression, offenders frequently come into contact with clothes of the victim, thereby leaving traces of DNA-bearing biological material on the garments. Since tape-lifting and swabbing, the currently established methods for non-destructive trace DNA sampling from clothing, both have their shortcomings in collection efficiency and handling, we thought about a new collection method for these challenging samples. Testing two readily available electrostatic devices for their potential to sample biological material from garments made of different fabrics, we found one of them, the electrostatic dust print lifter (DPL), to perform comparable to well-established sampling with wet cotton swabs. In simulated aggression scenarios, we had the same success rate for the establishment of single aggressor profiles, suitable for database submission, with both the DPL and wet swabbing. However, we lost a substantial amount of information with electrostatic sampling, since almost no mixed aggressor-victim profiles suitable for database entry could be established, compared to conventional swabbing. This study serves as a proof of principle for electrostatic DNA sampling from items of clothing. The technique still requires optimization before it might be used in real casework. But we are confident that in the future it could be an efficient and convenient contribution to the toolbox of forensic practitioners.
Resumo:
OBJECTIVE To determine the biomechanical effect of an intervertebral spacer on construct stiffness in a PVC model and cadaveric canine cervical vertebral columns stabilized with monocortical screws/polymethylmethacrylate (PMMA). STUDY DESIGN Biomechanical study. SAMPLE POPULATION PVC pipe; cadaveric canine vertebral columns. METHODS PVC model-PVC pipe was used to create a gap model mimicking vertebral endplate orientation and disk space width of large-breed canine cervical vertebrae; 6 models had a 4-mm gap with no spacer (PVC group 1); 6 had a PVC pipe ring spacer filling the gap (PCV group 2). Animals-large breed cadaveric canine cervical vertebral columns (C2-C7) from skeletally mature dogs without (cadaveric group 1, n = 6, historical data) and with an intervertebral disk spacer (cadaveric group 2, n = 6) were used. All PVC models and cadaver specimens were instrumented with monocortical titanium screws/PMMA. Stiffness of the 2 PVC groups was compared in extension, flexion, and lateral bending using non-destructive 4-point bend testing. Stiffness testing in all 3 directions was performed of the unaltered C4-C5 vertebral motion unit in cadaveric spines and repeated after placement of an intervertebral cortical allograft ring and instrumentation. Data were compared using a linear mixed model approach that also incorporated data from previously tested spines with the same screw/PMMA construct but without disk spacer (cadaveric group 1). RESULTS Addition of a spacer increased construct stiffness in both the PVC model (P < .001) and cadaveric vertebral columns (P < .001) compared to fixation without a spacer. CONCLUSIONS Addition of an intervertebral spacer significantly increased construct stiffness of monocortical screw/PMMA fixation.
Resumo:
OBJECTIVE To compare biomechanical stiffness of cadaveric canine cervical spine constructs stabilized with bicortical stainless steel pins and polymethylmethacrylate (PMMA), monocortical stainless steel screws with PMMA, or monocortical titanium screws with PMMA. STUDY DESIGN Biomechanical cadaver study. ANIMALS Eighteen canine cervical vertebral columns (C2-C7) were collected from skeletally mature dogs (weighing 22-32 kg). METHODS Specimens were radiographed and examined by dual energy X-ray absorptiometry. Stiffness of the unaltered C4-C5 intervertebral motion unit was measured in extension, flexion and lateral bending using non-destructive 4-point bend testing. Specimens were then stabilized by (1) bicortical stainless steel pins/PMMA, (2) monocortical stainless steel screws/PMMA, or (3) monocortical titanium screws/PMMA. Mechanical testing was repeated and stiffness data from unaltered specimens and the 3 treatment groups were compared. RESULTS All 3 surgical methods significantly increased stiffness of the C4-C5 motion unit compared with the unaltered specimen (P < .001 for all treatments), but stiffness was not significantly different among the 3 fixation groups (P = .578). CONCLUSIONS In this model, monocortical screw fixation (with stainless steel or titanium screws) was biomechanically equivalent to bicortical fixation.
Resumo:
Endolithic bioerosion is difficult to analyse and to describe, and it usually requires damaging of the sample material. Sponge erosion (Entobia) may be one of the most difficult to evaluate as it is simultaneously macroscopically inhomogeneous and microstructurally intricate. We studied the bioerosion traces of the two Australian sponges Cliona celata Grant, 1826 (sensu Schönberg 2000) and Cliona orientalis Thiele, 1900 with a newly available radiographic technology: high resolution X-ray micro-computed tomography (MCT). MCT allows non-destructive visualisation of live and dead structures in three dimensions and was compared to traditional microscopic methods. MCT and microscopy showed that C. celata bioerosion was more intense in the centre and branched out in the periphery. In contrast, C. orientalis produced a dense, even trace meshwork and caused an overall more intense erosion pattern than C. celata. Extended pioneering filaments were not usually found at the margins of the studied sponge erosion, but branches ended abruptly or tapered to points. Results obtained with MCT were similar in quality to observations from transparent optical spar under the dissecting microscope. Microstructures could not be resolved as well as with e.g. scanning electron microscopy (SEM). Even though sponge scars and sponge chips were easily recognisable on maximum magnification MCT images, they lacked the detail that is available from SEM. Other drawbacks of MCT involve high costs and presently limited access. Even though MCT cannot presently replace traditional techniques such as corrosion casts viewed by SEM, we obtained valuable information. Especially for the possibility to measure endolithic pore volumes, we regard MCT as a very promising tool that will continue to be optimised. A combination of different methods will produce the best results in the study of Entobia.
Resumo:
Laminated sediment records from the oxygen minimum zone in the Arabian Sea offer unique ultrahigh-resolution archives for deciphering climate variability in the Arabian Sea region. Although numerous analytical techniques are available it has become increasingly popular during the past decade to analyze relative variations of sediment cores' chemical signature by non-destructive X-ray fluorescence (XRF) core scanning. We carefully selected an approximately 5 m long sediment core from the northern Arabian Sea (GeoB12309-5: 24°52.3' N; 62°59.9' E, 956 m water depth) for a detailed, comparative study of high-resolution techniques, namely non-destructive XRF core scanning (0.8 mm resolution) and ICP-MS/OES analysis on carefully selected, discrete samples (1 mm resolution). The aim of our study was to more precisely define suitable chemical elements that can be accurately analyzed and to determine which elemental ratios can be interpretated down to sub-millimeter-scale resolutions. Applying the Student's t-test our results show significantly correlating (1% significance level) elemental patterns for all S, Ca, Fe, Zr, Rb, and Sr, as well as the K/Ca, Fe/Ti and Ti/Al ratios that are all related to distinct lithological changes. After careful consideration of all errors for the ICP analysis we further provide respective factors of XRF Core Scanner software error's underestimation by applying Chi-square-tests, which is especially relevant for elements with high count rates. As demonstrated by these new, ultra-high resolution data core scanning has major advantages (high-speed, low costs, few sample preparation steps) and represents an increasingly required alternative over the time consuming, expensive, elaborative, and destructive wet chemical analyses (e.g., by ICP-MS/OES after acid digestions), and meanwhile also provides high-quality data in unprecedented resolution.
Resumo:
La fisuración iniciada en la superficie de los pavimentos asfálticos constituye uno de los más frecuentes e importantes modos de deterioro que tienen lugar en los firmes bituminosos, como han demostrado los estudios teóricos y experimentales llevados a cabo en la última década. Sin embargo, este mecanismo de fallo no ha sido considerado por los métodos tradicionales de diseño de estos firmes. El concepto de firmes de larga duración se fundamenta en un adecuado seguimiento del proceso de avance en profundidad de estos deterioros y la intervención en el momento más apropiado para conseguir mantenerlos confinados como fisuras de profundidad parcial en la capa superficial más fácilmente accesible y reparable, de manera que pueda prolongarse la durabilidad y funcionalidad del firme y reducir los costes generalizados de su ciclo de vida. Por lo tanto, para la selección de la estrategia óptima de conservación de los firmes resulta esencial disponer de metodologías que posibiliten la identificación precisa in situ de la fisuración descendente, su seguimiento y control, y que además permitan una determinación fiable y con alto rendimiento de su profundidad y extensión. En esta Tesis Doctoral se presentan los resultados obtenidos mediante la investigación sistemática de laboratorio e in situ llevada a cabo para la obtención de datos sobre fisuración descendente en firmes asfálticos y para el estudio de procedimientos de evaluación de la profundidad de este tipo de fisuras empleando técnicas de ultrasonidos. Dichos resultados han permitido comprobar que la metodología no destructiva propuesta, de rápida ejecución, bajo coste y sencilla implementación (principalmente empleada hasta el momento en estructuras metálicas y de hormigón, debido a las dificultades que introduce la naturaleza viscoelástica de los materiales bituminosos) puede ser aplicada con suficiente fiabilidad y repetibilidad sobre firmes asfálticos. Las medidas resultan asimismo independientes del espesor total del firme. Además, permite resolver algunos de los inconvenientes frecuentes que presentan otros métodos de diagnóstico de las fisuras de pavimentos, tales como la extracción de testigos (sistema destructivo, de alto coste y prolongados tiempos de interrupción del tráfico) o algunas otras técnicas no destructivas como las basadas en medidas de deflexiones o el georradar, las cuales no resultan suficientemente precisas para la investigación de fisuras superficiales. Para ello se han realizado varias campañas de ensayos sobre probetas de laboratorio en las que se han estudiado diferentes condiciones empíricas como, por ejemplo, distintos tipos de mezclas bituminosas en caliente (AC, SMA y PA), espesores de firme y adherencias entre capas, temperaturas, texturas superficiales, materiales de relleno y agua en el interior de las grietas, posición de los sensores y un amplio rango de posibles profundidades de fisura. Los métodos empleados se basan en la realización de varias medidas de velocidad o de tiempo de transmisión del pulso ultrasónico sobre una única cara o superficie accesible del material, de manera que resulte posible obtener un coeficiente de transmisión de la señal (mediciones relativas o autocompensadas). Las mediciones se han realizado a bajas frecuencias de excitación mediante dos equipos de ultrasonidos diferentes dotados, en un caso, de transductores de contacto puntual seco (DPC) y siendo en el otro instrumento de contacto plano a través de un material especialmente seleccionado para el acoplamiento (CPC). Ello ha permitido superar algunos de los tradicionales inconvenientes que presenta el uso de los transductores convencionales y no precisar preparación previa de las superficies. La técnica de autocalibración empleada elimina los errores sistemáticos y la necesidad de una calibración local previa, demostrando el potencial de esta tecnología. Los resultados experimentales han sido comparados con modelos teóricos simplificados que simulan la propagación de las ondas ultrasónicas en estos materiales bituminosos fisurados, los cuales han sido deducidos previamente mediante un planteamiento analítico y han permitido la correcta interpretación de dichos datos empíricos. Posteriormente, estos modelos se han calibrado mediante los resultados de laboratorio, proporcionándose sus expresiones matemáticas generalizadas y gráficas para su uso rutinario en las aplicaciones prácticas. Mediante los ensayos con ultrasonidos efectuados en campañas llevadas a cabo in situ, acompañados de la extracción de testigos del firme, se han podido evaluar los modelos propuestos. El máximo error relativo promedio en la estimación de la profundidad de las fisuras al aplicar dichos modelos no ha superado el 13%, con un nivel de confianza del 95%, en el conjunto de todos los ensayos realizados. La comprobación in situ de los modelos ha permitido establecer los criterios y las necesarias recomendaciones para su utilización sobre firmes en servicio. La experiencia obtenida posibilita la integración de esta metodología entre las técnicas de auscultación para la gestión de su conservación. Abstract Surface-initiated cracking of asphalt pavements constitutes one of the most frequent and important types of distress that occur in flexible bituminous pavements, as clearly has been demonstrated in the technical and experimental studies done over the past decade. However, this failure mechanism has not been taken into consideration for traditional methods of flexible pavement design. The concept of long-lasting pavements is based on adequate monitoring of the depth and extent of these deteriorations and on intervention at the most appropriate moment so as to contain them in the surface layer in the form of easily-accessible and repairable partial-depth topdown cracks, thereby prolonging the durability and serviceability of the pavement and reducing the overall cost of its life cycle. Therefore, to select the optimal maintenance strategy for perpetual pavements, it becomes essential to have access to methodologies that enable precise on-site identification, monitoring and control of top-down propagated cracks and that also permit a reliable, high-performance determination of the extent and depth of cracking. This PhD Thesis presents the results of systematic laboratory and in situ research carried out to obtain information about top-down cracking in asphalt pavements and to study methods of depth evaluation of this type of cracking using ultrasonic techniques. These results have demonstrated that the proposed non-destructive methodology –cost-effective, fast and easy-to-implement– (mainly used to date for concrete and metal structures, due to the difficulties caused by the viscoelastic nature of bituminous materials) can be applied with sufficient reliability and repeatability to asphalt pavements. Measurements are also independent of the asphalt thickness. Furthermore, it resolves some of the common inconveniences presented by other methods used to evaluate pavement cracking, such as core extraction (a destructive and expensive procedure that requires prolonged traffic interruptions) and other non-destructive techniques, such as those based on deflection measurements or ground-penetrating radar, which are not sufficiently precise to measure surface cracks. To obtain these results, extensive tests were performed on laboratory specimens. Different empirical conditions were studied, such as various types of hot bituminous mixtures (AC, SMA and PA), differing thicknesses of asphalt and adhesions between layers, varied temperatures, surface textures, filling materials and water within the crack, different sensor positions, as well as an ample range of possible crack depths. The methods employed in the study are based on a series of measurements of ultrasonic pulse velocities or transmission times over a single accessible side or surface of the material that make it possible to obtain a signal transmission coefficient (relative or auto-calibrated readings). Measurements were taken at low frequencies by two short-pulse ultrasonic devices: one equipped with dry point contact transducers (DPC) and the other with flat contact transducers that require a specially-selected coupling material (CPC). In this way, some of the traditional inconveniences presented by the use of conventional transducers were overcome and a prior preparation of the surfaces was not required. The auto-compensating technique eliminated systematic errors and the need for previous local calibration, demonstrating the potential for this technology. The experimental results have been compared with simplified theoretical models that simulate ultrasonic wave propagation in cracked bituminous materials, which had been previously deduced using an analytical approach and have permitted the correct interpretation of the aforementioned empirical results. These models were subsequently calibrated using the laboratory results, providing generalized mathematical expressions and graphics for routine use in practical applications. Through a series of on-site ultrasound test campaigns, accompanied by asphalt core extraction, it was possible to evaluate the proposed models, with differences between predicted crack depths and those measured in situ lower than 13% (with a confidence level of 95%). Thereby, the criteria and the necessary recommendations for their implementation on in-service asphalt pavements have been established. The experience obtained through this study makes it possible to integrate this methodology into the evaluation techniques for pavement management systems.
Resumo:
Non-destructive, visual evaluation and mechanical testing techniques were used to assess the structural properties of 374 samples of chestnut (Castanea sativa). The principal components method was applied to establish and interpret correlations between variables obtained of modulus of elasticity, bending strength and density. The static modulus of elasticity presented higher correlation values than those obtained using non-destructive methods. Bending strength presented low correlations with the non-destructive parameters, but there was some relation to the different knot ratios defined. The relationship was stronger with the most widely used ratio, CKDR. No significant correlations were observed between any of the variables and density.
Resumo:
Following the success achieved in previous research projects usin non-destructive methods to estimate the physical and mechanical aging of particle and fibre boards, this paper studies the relationships between aging, physical and mechanical changes, using non-destructive measurements of oriented strand board (OSB). 184 pieces of OSB board from a French source were tested to analyze its actual physical and mechanical properties. The same properties were estimated using acoustic non-destructive methods (ultrasound and stress wave velocity) during a physical laboratory aging test. Measurements were recorded of propagation wave velocity with the sensors aligned, edge to edge, and forming an angle of 45 degrees, with both sensors on the same face of the board. This is because aligned measures are not possible on site. The velocity results are always higher in 45 degree measurements. Given the results of statistical analysis, it can be concluded that there is a strong relationship between acoustic measurements and the decline in physical and mechanical properties of the panels due to aging. The authors propose several models to estimate the physical and mechanical properties of board, as well as their degree of aging. The best results are obtained using ultrasound, although the difference in comparison with the stress wave method is not very significant. A reliable prediction of the degree of deterioration (aging) of board is presented.