868 resultados para Non-Rigid Structure from Motion
Resumo:
Following the intrinsically linked balance sheets in his Capital Formation Life Cycle, Lukas M. Stahl explains with his Triple A Model of Accounting, Allocation and Accountability the stages of the Capital Formation process from FIAT to EXIT. Based on the theoretical foundations of legal risk laid by the International Bar Association with the help of Roger McCormick and legal scholars such as Joanna Benjamin, Matthew Whalley and Tobias Mahler, and founded on the basis of Wesley Hohfeld’s category theory of jural relations, Stahl develops his mutually exclusive Four Determinants of Legal Risk of Law, Lack of Right, Liability and Limitation. Those Four Determinants of Legal Risk allow us to apply, assess, and precisely describe the respective legal risk at all stages of the Capital Formation Life Cycle as demonstrated in case studies of nine industry verticals of the proposed and currently negotiated Transatlantic Trade and Investment Partnership between the United States of America and the European Union, TTIP, as well as in the case of the often cited financing relation between the United States and the People’s Republic of China. Having established the Four Determinants of Legal Risk and its application to the Capital Formation Life Cycle, Stahl then explores the theoretical foundations of capital formation, their historical basis in classical and neo-classical economics and its forefathers such as The Austrians around Eugen von Boehm-Bawerk, Ludwig von Mises and Friedrich von Hayek and most notably and controversial, Karl Marx, and their impact on today’s exponential expansion of capital formation. Starting off with the first pillar of his Triple A Model, Accounting, Stahl then moves on to explain the Three Factors of Capital Formation, Man, Machines and Money and shows how “value-added” is created with respect to the non-monetary capital factors of human resources and industrial production. Followed by a detailed analysis discussing the roles of the Three Actors of Monetary Capital Formation, Central Banks, Commercial Banks and Citizens Stahl readily dismisses a number of myths regarding the creation of money providing in-depth insight into the workings of monetary policy makers, their institutions and ultimate beneficiaries, the corporate and consumer citizens. In his second pillar, Allocation, Stahl continues his analysis of the balance sheets of the Capital Formation Life Cycle by discussing the role of The Five Key Accounts of Monetary Capital Formation, the Sovereign, Financial, Corporate, Private and International account of Monetary Capital Formation and the associated legal risks in the allocation of capital pursuant to his Four Determinants of Legal Risk. In his third pillar, Accountability, Stahl discusses the ever recurring Crisis-Reaction-Acceleration-Sequence-History, in short: CRASH, since the beginning of the millennium starting with the dot-com crash at the turn of the millennium, followed seven years later by the financial crisis of 2008 and the dislocations in the global economy we are facing another seven years later today in 2015 with several sordid debt restructurings under way and hundred thousands of refugees on the way caused by war and increasing inequality. Together with the regulatory reactions they have caused in the form of so-called landmark legislation such as the Sarbanes-Oxley Act of 2002, the Dodd-Frank Act of 2010, the JOBS Act of 2012 or the introduction of the Basel Accords, Basel II in 2004 and III in 2010, the European Financial Stability Facility of 2010, the European Stability Mechanism of 2012 and the European Banking Union of 2013, Stahl analyses the acceleration in size and scope of crises that appears to find often seemingly helpless bureaucratic responses, the inherent legal risks and the complete lack of accountability on part of those responsible. Stahl argues that the order of the day requires to address the root cause of the problems in the form of two fundamental design defects of our Global Economic Order, namely our monetary and judicial order. Inspired by a 1933 plan of nine University of Chicago economists abolishing the fractional reserve system, he proposes the introduction of Sovereign Money as a prerequisite to void misallocations by way of judicial order in the course of domestic and transnational insolvency proceedings including the restructuring of sovereign debt throughout the entire monetary system back to its origin without causing domino effects of banking collapses and failed financial institutions. In recognizing Austrian-American economist Schumpeter’s Concept of Creative Destruction, as a process of industrial mutation that incessantly revolutionizes the economic structure from within, incessantly destroying the old one, incessantly creating a new one, Stahl responds to Schumpeter’s economic chemotherapy with his Concept of Equitable Default mimicking an immunotherapy that strengthens the corpus economicus own immune system by providing for the judicial authority to terminate precisely those misallocations that have proven malignant causing default perusing the century old common law concept of equity that allows for the equitable reformation, rescission or restitution of contract by way of judicial order. Following a review of the proposed mechanisms of transnational dispute resolution and current court systems with transnational jurisdiction, Stahl advocates as a first step in order to complete the Capital Formation Life Cycle from FIAT, the creation of money by way of credit, to EXIT, the termination of money by way of judicial order, the institution of a Transatlantic Trade and Investment Court constituted by a panel of judges from the U.S. Court of International Trade and the European Court of Justice by following the model of the EFTA Court of the European Free Trade Association. Since the first time his proposal has been made public in June of 2014 after being discussed in academic circles since 2011, his or similar proposals have found numerous public supporters. Most notably, the former Vice President of the European Parliament, David Martin, has tabled an amendment in June 2015 in the course of the negotiations on TTIP calling for an independent judicial body and the Member of the European Commission, Cecilia Malmström, has presented her proposal of an International Investment Court on September 16, 2015. Stahl concludes, that for the first time in the history of our generation it appears that there is a real opportunity for reform of our Global Economic Order by curing the two fundamental design defects of our monetary order and judicial order with the abolition of the fractional reserve system and the introduction of Sovereign Money and the institution of a democratically elected Transatlantic Trade and Investment Court that commensurate with its jurisdiction extending to cases concerning the Transatlantic Trade and Investment Partnership may complete the Capital Formation Life Cycle resolving cases of default with the transnational judicial authority for terminal resolution of misallocations in a New Global Economic Order without the ensuing dangers of systemic collapse from FIAT to EXIT.
Resumo:
One of the most disputable matters in the theory of finance has been the theory of capital structure. The seminal contributions of Modigliani and Miller (1958, 1963) gave rise to a multitude of studies and debates. Since the initial spark, the financial literature has offered two competing theories of financing decision: the trade-off theory and the pecking order theory. The trade-off theory suggests that firms have an optimal capital structure balancing the benefits and costs of debt. The pecking order theory approaches the firm capital structure from information asymmetry perspective and assumes a hierarchy of financing, with firms using first internal funds, followed by debt and as a last resort equity. This thesis analyses the trade-off and pecking order theories and their predictions on a panel data consisting 78 Finnish firms listed on the OMX Helsinki stock exchange. Estimations are performed for the period 2003–2012. The data is collected from Datastream system and consists of financial statement data. A number of capital structure characteristics are identified: firm size, profitability, firm growth opportunities, risk, asset tangibility and taxes, speed of adjustment and financial deficit. A regression analysis is used to examine the effects of the firm characteristics on capitals structure. The regression models were formed based on the relevant theories. The general capital structure model is estimated with fixed effects estimator. Additionally, dynamic models play an important role in several areas of corporate finance, but with the combination of fixed effects and lagged dependent variables the model estimation is more complicated. A dynamic partial adjustment model is estimated using Arellano and Bond (1991) first-differencing generalized method of moments, the ordinary least squares and fixed effects estimators. The results for Finnish listed firms show support for the predictions of profitability, firm size and non-debt tax shields. However, no conclusive support for the pecking-order theory is found. However, the effect of pecking order cannot be fully ignored and it is concluded that instead of being substitutes the trade-off and pecking order theory appear to complement each other. For the partial adjustment model the results show that Finnish listed firms adjust towards their target capital structure with a speed of 29% a year using book debt ratio.
Resumo:
During the Sedimentation of the platform carbonate deposits of the Korallenoolith Formation (middle Oxfordian to early Kimmeridgian) small buildups ofcorals formed in the Lower Saxony Basin. These bioconstructions are restricted to particular horizons (Untere Korallenbank,ßorigenuna-Bank Member etc.) and represent patch reefs and biostromes. In this study, the development of facies, fossil assemblages, spatial distribution of fossils, and reefs of the ßorigenuna-Bank Member (upper Middle Oxfordian) in the Süntel Mts and the eastern Wesergebirge Mts is described; the formation of reefs is discussed in detail. Twelve facies types are described and interpreted. They vary between high-energy deposits as well winnowed oolites and quiet-water lagoonal mudstones. Owing to the significance of biota, micro- and macrofossils are systematically described. The reefs are preserved in growth position, are characterized by numerous corresponding features and belong to a certain reef type. According to their size, shape and framework, they represent patch reefs, coral knobs (sensu James, 1983), coral thrombolite reefs (sensu Leinfelder et al., 1994) or “Klein- and Mitteldickichte” (sensu Laternser, 2001). Their growth fabric corresponds to the superstratal (dense) pillarstone (sensu Insalaco, 1998). As the top of the ßorigenuna-Bank displays an erosional unconformity (so-called Hauptdiskontinuität), the top of the reefs are erosionally capped. Their maximum height amounts to at least the maximum thickness of the ßorigenuna-Bank which does not exceed 4 metres. The diversity of coral fauna of the reefs is relatively low; a total of 13 species is recorded. The coral community is over- whelmingly dominated by the thin-branched ramose Thamnasteria dendroidea (Lamouroux) that forms aggregations of colonies (77?. dendroidea thickets). Leafy to platy Fungiastrea arachnoides (Parkinson) and Thamnasteria concinna (Goldfuss) occur subordinately, other species are only of minor importance. In a few cases, the reef-core consisting of Th. dendroidea thickets is laterally encrusted by platy F. arachnoides and Th. concinna colonies, and microbial carbonates. This zonation reflects probably a succession of different reef builders as a result of changing environmental conditions (allogenic succession). Moreover, some reefs are overlain by a biostrome made of large Solenopora jurassica nodules passing laterally in a nerinean bed. Mikrobial carbonates promoted reef growth and favoured the preservation of reef organismn in their growth position or in situ. They exhibit a platy, dendroid, or reticulate growth form or occur as downward-facing hemispheroids. According to their microstructure, they consist of a peloidal, clotted, or unstructured fabric (predominately layered and poorly structured thrombolite as well as clotted leiolite) (sensu Schmid, 1996). Abundant endo- and epibiontic organisms (bivalves, gastropods, echinoids, asteroids, ophiuroids, crabs etc) are linked to the reefs. With regard to their guild structure, the reefs represent occurrences at which only a few coral species serve as builder. Moreover, microbial carbonates contribute to both building and binding of the reefs. Additional binder as well as baffler are present, but not abundant. According to the species diversity, the dweller guild comprises by far the highest number of invertebrate taxa. The destroyer guild chiefly encompasses bivalves. The composition of the reef community was influenced by the habitat structure of the Th. dendroidea thickets. Owing to the increase in encrusting organisms and other inhabitants of the thickets, the locational factors changed, since light intensity and hydrodynamic energy level and combined parameters as oxygen supply declined in the crowded habitat. Therefore a characteristic succession of organisms is developed that depends on and responds to changing environmental conditions („community replacement sequence“). The succession allows the differentiation of different stages. It started after the cessation of the polyps with boring organisms and photoautotrophic micro-encrusters (calcareous algae, Lithocodium aggregatum). Following the death of these pioneer organisms, encrusting and adherent organisms (serpulids, „Terebella“ species, bryozoans, foraminifers, thecideidinids, sklerospongid and pharetronid sponges, terebratulids), small mobile organisms (limpets), and microbial induced carbonates developed. The final stage in the community replacement sequence gave rise to small cryptic habitats and organisms that belong to these caves (cryptobionts, coelobites). The habitat conditions especially favoured small non-rigid demosponges (“soft sponges”) that tolerate reduced water circulation. Reef rubble is negligible, so that the reefs are bordered by fossiliferous micritic limestone passing laterally in micritic limestone. Approximately 10% of the study area (outcropping florigemma-Bank) corresponds to reefal deposits whereas the remaining 90% encompass lagoonal inter-reefal deposits. The reef development is a good example for the interaction between reef growth, facies development and sea-level changes. It was initiated by a sea-level rise (transgression) and corresponding decrease in the hydrodynamic energy level. Colonization and reef growth took place on a coarse-grained Substrate composed of oncoids, larger foraminifers and bioclasts. Reef growth took place in a calm marine lagoonal setting. Increasing abundance of spherical coral morphs towards the Northeast (section Kessiehausen, northwestem Süntel Mts) reflects higher turbidity and a facies transition to coral occurrences of the ßorigenuna-Bank Member in the adjacent Deister Mts. The reef growth was neither influenced by stonns nor by input of siliciclastic deposits, and took place in short time - probably in only a thousand years under most probably mesotrophic conditions. The mass appearance of solenoporids and nerineids in the upper part of the ßorigenuna-Bank Member point to enhanced nutrient level as a result of regression. In addition, this scenario of fluctuations in nutrient availability seems to be responsible for the cessation of reef corals. The sea level fall reached its climax in the subaerial exposure and palaeokarst development of the florigemma-Bank. The reef building corals are typical pioneer species. The blade-like, flattened F. amchnoides colonies are characterized by their light porous calcium carbonate skeleton, which is a distinct advantage in soft bottom environment. Thus, they settled on soft bottom exposing the large parts of its surface to the incoming light. On the other hand, in response to their light requirements they were also able to settle shaded canopy structures or reef caves. Th. dendroidea is an opportunistic coral species in very shallow, well illuminated marine environment. Their thin and densely spaced branches led to a very high surface/volume ratio of the colonies that were capable to exploit incoming light due to their small thamasterioid calices characterized by “highly integrated polyps”. In addition, sideward coalescence of branches during colony growth led to a wave-resistant framework and favoured the authochthonous preservation of the reefs. Asexual reproduction by fragmented colonies promoted reef development as Th. dendroidea thickets laterally extend over the sea floor or new reefs have developed from broken fragments of parent colonies. Similar build ups with Th. dendroidea as a dominant or frequent reef building coral species are known from the Paris Basin and elsewhere from the Lower Saxony Basin (Kleiner Deister Mts). These buildups developed in well-illuminated shallow water and encompass coral reefs or coral thrombolite reefs. Intra- and inter-reef deposits vary between well-winnowed reef debris limestone and mudstones representing considerably calmer conditions. Solenoporid, nerineids and diceratides belong to the characteristic fossils of these occurrences. However, diceratides are missing in theflorigemma-Bank Member. Th. dendroidea differs in its colonization of low- to high-energy environment from recent ramose scleractinian corals (e.g., Acropora and Porites sp.). The latter are restricted to agitated water habitats creating coral thickets and carpets. According to the morphologic plasticity of Th. dendroidea, thick-branched colonies developed in a milieu of high water energy, whereas fragile, wide- and thin-branched colonies prevail in low-energy settings. Due to its relatively rapid growth, Th. dendroidea was able to keep pace with increased Sedimentation rates. 68 benthonic foraminiferan species/taxa have been recognized in thin sections. Agglutinated foraminifers (textulariids) predominate when compared with rotaliids and milioliids. Numerous species are restricted to a certain facies type or occur in higher population densities, in particular Everticyclammina sp., a larger agglutinated foraminifer that occurs in rock building amounts. Among the 25 reef dwelling foraminiferal species, a few were so far only known from Late Jurassic sponge reefs. Another striking feature is the frequency of adherent foraminiferal species. Fauna and flora, in particular dasycladaleans and agglutinated foraminifers, document palaeobiogeographic relationships to the Tethys and point to (sub)tropical conditions. Moreover, in Germany this foraminiferan assemblage is yet uncompared. In Southern Germany similar tethyan type assemblages are not present in strata as young as Middle Tithonian.
Resumo:
The creation of thermostable enzymes has wide-ranging applications in industrial, scientific, and pharmaceutical settings. As various stabilization techniques exist, it is often unclear how to best proceed. To this end, we have redesigned Cel5A (HjCel5A) from Hypocrea jecorina (anamorph Trichoderma reesei) to comparatively evaluate several significantly divergent stabilization methods: 1) consensus design, 2) core repacking, 3) helix dipole stabilization, 4) FoldX ΔΔG approximations, 5) Triad ΔΔG approximations, and 6) entropy reduction through backbone stabilization. As several of these techniques require structural data, we initially solved the first crystal structure of HjCel5A to 2.05 Å. Results from the stabilization experiments demonstrate that consensus design works best at accurately predicting highly stabilizing and active mutations. FoldX and helix dipole stabilization, however, also performed well. Both methods rely on structural data and can reveal non-conserved, structure-dependent mutations with high fidelity. HjCel5A is a prime target for stabilization. Capable of cleaving cellulose strands from agricultural waste into fermentable sugars, this protein functions as the primary endoglucanase in an organism commonly used in the sustainable biofuels industry. Creating a long-lived, highly active thermostable HjCel5A would allow cellulose hydrolysis to proceed more efficiently, lowering production expenses. We employed information gleaned during the survey of stabilization techniques to generate HjCel5A variants demonstrating a 12-15 °C increase in the temperature at which 50% of the total activity persists, an 11-14 °C increase in optimal operating temperature, and a 60% increase over the maximal amount of hydrolysis achievable using the wild type enzyme. We anticipate that our comparative analysis of stabilization methods will prove useful in future thermostabilization experiments.
Resumo:
Over the last few decades, most large cities in the developing world have been experiencing rapid and imbalanced transport sector development resulting in severe congestion and poor levels of service. The most common response at a policy level under this circumstance has been to focus on private and public motorized transport modes, and especially on traffic control measures and mass transit systems. Despite their major role in the overall transport system in many developing cities in Asia & Latin America, relatively little attention is given to non-motorized transport (NMT) modes (walk, bicycle and cycle-rickshaw). In particular, this ideology is applicable to the paid category of non-motorized public transport (NMPT), notably three-wheeler cycle rickshaws that still have an important socio-economic, environmental and trip-making role in many developing cities. Despite, they are often seen as inefficient and backward; an impediment to progress; and inconsistent with modern urban image. Policy measures therefore, to restrict or eliminate non-motorized transport from urban arterials and other feeder networks have been implemented in cities as diverse as Dhaka, Delhi, Karachi, Bangkok, Jakarta, Manila, Surabaya and Beijing . This paper will primarily investigate the key contribution of NMPT in the sustainable transport system and urban fabric of developing cities, with Dhaka as case study. The paper will also highlight in detail the impediments towards NMPT development and provide introductory concept on possible role this mode is expected to play into the future of these cities
Resumo:
This research underlines the extensive application of nanostructured metal oxides in environmental systems such as hazardous waste remediation and water purification. This study tries to forge a new understanding of the complexity of adsorption and photocatalysis in the process of water treatment. Sodium niobate doped with a different amount of tantalum, was prepared via a hydrothermal reaction and was observed to be able to adsorb highly hazardous bivalent radioactive isotopes such as Sr2+ and Ra2+ions. This study facilitates the preparation of Nb-based adsorbents for efficiently removing toxic radioactive ions from contaminated water and also identifies the importance of understanding the influence of heterovalent substitution in microporous frameworks. Clay adsorbents were prepared via a two-step method to remove anionic and non-ionic herbicides from water. Firstly, layered beidellite clay was treated with acid in a hydrothermal process; secondly, common silane coupling agents, 3-chloro-propyl trimethoxysilane or triethoxy silane, were grafted onto the acid treated samples to prepare the adsorption materials. In order to isolate the effect of the clay surface, we compared the adsorption property of clay adsorbents with ƒ×-Al2O3 nanofibres grafted with the same functional groups. Thin alumina (£^-Al2O3) nanofibres were modified by the grafting of two organosilane agents 3-chloropropyltriethoxysilane and octyl triethoxysilane onto the surface, for the adsorptive removal of alachlor and imazaquin herbicides from water. The formation of organic groups during the functionalisation process established super hydrophobic sites along the surfaces and those non-polar regions of the surfaces were able to make close contact with the organic pollutants. A new structure of anatase crystals linked to clay fragments was synthesised by the reaction of TiOSO4 with laponite clay for the degradation of pesticides. Based on the Ti/clay ratio, these new catalysts showed a high degradation rate when compared with P25. Moreover, immobilized TiO2 on laponite clay fragments could be readily separated out from a slurry system after the photocatalytic reaction. Using a series of partial phase transition methods, an effective catalyst with fibril morphology was prepared for the degradation of different types of phenols and trace amount of herbicides from water. Both H-titanate and TiO2-(B) fibres coated with anatase nanocrystal were studied. When compared with a laponite clay photocatalyst, it was found that anatase dotted TiO2-(B) fibres prepared by a 45 h hydrothermal treatment followed by calcination were not only superior in performance in photocatalysis but could also be readily separated from a slurry system after photocatalytic reactions. This study has laid the foundation for the development of the ability to fabricate highly efficient nanostructured solids for the removal of radioactive ions and organic pollutants from contaminated water. These results now seem set to contribute to the development of advanced water purification devices in the future. These modified nanostructured materials with unusual properties have broadened their application range beyond their traditional use as adsorbents, to also encompass the storage of nuclear waste after concentrating from contaminated water.
Resumo:
Spontaneous facial expressions differ from posed ones in appearance, timing and accompanying head movements. Still images cannot provide timing or head movement information directly. However, indirectly the distances between key points on a face extracted from a still image using active shape models can capture some movement and pose changes. This information is superposed on information about non-rigid facial movement that is also part of the expression. Does geometric information improve the discrimination between spontaneous and posed facial expressions arising from discrete emotions? We investigate the performance of a machine vision system for discrimination between posed and spontaneous versions of six basic emotions that uses SIFT appearance based features and FAP geometric features. Experimental results on the NVIE database demonstrate that fusion of geometric information leads only to marginal improvement over appearance features. Using fusion features, surprise is the easiest emotion (83.4% accuracy) to be distinguished, while disgust is the most difficult (76.1%). Our results find different important facial regions between discriminating posed versus spontaneous version of one emotion and classifying the same emotion versus other emotions. The distribution of the selected SIFT features shows that mouth is more important for sadness, while nose is more important for surprise, however, both the nose and mouth are important for disgust, fear, and happiness. Eyebrows, eyes, nose and mouth are important for anger.
Resumo:
The paper provides an academic/practitioner collaborative reflection on the governance structure of a prominent New Zealand regional tourism organisation (RTO). The purpose is to address one of the neglected areas of tourism governance research; which is ‘Who’ governs the destination? The paper discusses the evolution of a public-private governance structure from the perspective of three former senior staff members. The authors were employed during a period of radical organisational change in the administration of the marketing of Rotorua, one of New Zealand’s leading resort destinations. The paper uses archival analysis and personal reflections, and concludes with a summary of key challenges and frustrations inherent in the complexity of public-private partnership (PPP) governance of an RTO. It is envisaged this summary of reflections will enhance tourism management students’ understanding of the complex and political nature of destination marketing organisation (DMO) governance at a local level.
Resumo:
Finite element analyses of the human body in seated postures requires digital models capable of providing accurate and precise prediction of the tissue-level response of the body in the seated posture. To achieve such models, the human anatomy must be represented with high fidelity. This information can readily be defined using medical imaging techniques such as Magnetic Resonance Imaging (MRI) or Computed Tomography (CT). Current practices for constructing digital human models, based on the magnetic resonance (MR) images, in a lying down (supine) posture have reduced the error in the geometric representation of human anatomy relative to reconstructions based on data from cadaveric studies. Nonetheless, the significant differences between seated and supine postures in segment orientation, soft-tissue deformation and soft tissue strain create a need for data obtained in postures more similar to the application posture. In this study, we present a novel method for creating digital human models based on seated MR data. An adult-male volunteer was scanned in a simulated driving posture using a FONAR 0.6T upright MRI scanner with a T1 scanning protocol. To compensate for unavoidable image distortion near the edges of the study, images of the same anatomical structures were obtained in transverse and sagittal planes. Combinations of transverse and sagittal images were used to reconstruct the major anatomical features from the buttocks through the knees, including bone, muscle and fat tissue perimeters, using Solidworks® software. For each MR image, B-splines were created as contours for the anatomical structures of interest, and LOFT commands were used to interpolate between the generated Bsplines. The reconstruction of the pelvis, from MR data, was enhanced by the use of a template model generated in previous work CT images. A non-rigid registration algorithm was used to fit the pelvis template into the MR data. Additionally, MR image processing was conducted to both the left and the right sides of the model due to the intended asymmetric posture of the volunteer during the MR measurements. The presented subject-specific, three-dimensional model of the buttocks and thighs will add value to optimisation cycles in automotive seat development when used in simulating human interaction with automotive seats.
Resumo:
The DNA damage response encompasses a complex series of signaling pathways that function to regulate and facilitate the repair of damaged DNA. Recent studies have shown that the repair of transcriptionally inactive chromatin, named heterochromatin, is dependent upon the phosphorylation of the co-repressor, Krüppel-associated box (KRAB) domain-associated protein (KAP-1), by the ataxia telangiectasia-mutated (ATM) kinase. Co-repressors, such as KAP-1, function to regulate the rigid structure of heterochromatin by recruiting histone-modifying enzymes, such HDAC1/2, SETDB1, and nucleosome-remodeling complexes such as CHD3. Here, we have characterized a phosphorylation site in the HP1-binding domain of KAP-1, Ser-473, which is phosphorylated by the cell cycle checkpoint kinase Chk2. Expression of a nonphosphorylatable S473A mutant conferred cellular sensitivity to DNA-damaging agents and led to defective repair of DNA double-strand breaks in heterochromatin. In addition, cells expressing S473A also displayed defective mobilization of the HP1-β chromodomain protein. The DNA repair defect observed in cells expressing S473A was alleviated by depletion of HP1-β, suggesting that phosphorylation of KAP-1 on Ser-473 promotes the mobilization of HP1-β from heterochromatin and subsequent DNA repair. These results suggest a novel mechanism of KAP-1-mediated chromatin restructuring via Chk2-regulated HP1-β exchange from heterochromatin, promoting DNA repair.
Resumo:
In this paper we propose a framework for both gradient descent image and object alignment in the Fourier domain. Our method centers upon the classical Lucas & Kanade (LK) algorithm where we represent the source and template/model in the complex 2D Fourier domain rather than in the spatial 2D domain. We refer to our approach as the Fourier LK (FLK) algorithm. The FLK formulation is advantageous when one pre-processes the source image and template/model with a bank of filters (e.g. oriented edges, Gabor, etc.) as: (i) it can handle substantial illumination variations, (ii) the inefficient pre-processing filter bank step can be subsumed within the FLK algorithm as a sparse diagonal weighting matrix, (iii) unlike traditional LK the computational cost is invariant to the number of filters and as a result far more efficient, and (iv) this approach can be extended to the inverse compositional form of the LK algorithm where nearly all steps (including Fourier transform and filter bank pre-processing) can be pre-computed leading to an extremely efficient and robust approach to gradient descent image matching. Further, these computational savings translate to non-rigid object alignment tasks that are considered extensions of the LK algorithm such as those found in Active Appearance Models (AAMs).
Resumo:
utomatic pain monitoring has the potential to greatly improve patient diagnosis and outcomes by providing a continuous objective measure. One of the most promising methods is to do this via automatically detecting facial expressions. However, current approaches have failed due to their inability to: 1) integrate the rigid and non-rigid head motion into a single feature representation, and 2) incorporate the salient temporal patterns into the classification stage. In this paper, we tackle the first problem by developing a “histogram of facial action units” representation using Active Appearance Model (AAM) face features, and then utilize a Hidden Conditional Random Field (HCRF) to overcome the second issue. We show that both of these methods improve the performance on the task of pain detection in sequence level compared to current state-of-the-art-methods on the UNBC-McMaster Shoulder Pain Archive.
Resumo:
We have explored the potential of deep Raman spectroscopy, specifically surface enhanced spatially offset Raman spectroscopy (SESORS), for non-invasive detection from within animal tissue, by employing SERS-barcoded nanoparticle (NP) assemblies as the diagnostic agent. This concept has been experimentally verified in a clinic-relevant backscattered Raman system with an excitation line of 785 nm under ex vivo conditions. We have shown that our SORS system, with a fixed offset of 2-3 mm, offered sensitive probing of injected QTH-barcoded NP assemblies through animal tissue containing both protein and lipid. In comparison to that of non-aggregated SERS-barcoded gold NPs, we have demonstrated that the tailored SERS-barcoded aggregated NP assemblies have significantly higher detection sensitivity. We report that these NP assemblies can be readily detected at depths of 7-8 mm from within animal proteinaceous tissue with high signal-to-noise (S/N) ratio. In addition they could also be detected from beneath 1-2 mm of animal tissue with high lipid content, which generally poses a challenge due to high absorption of lipids in the near-infrared region. We have also shown that the signal intensity and S/N ratio at a particular depth is a function of the SERS tag concentration used and that our SORS system has a QTH detection limit of 10-6 M. Higher detection depths may possibly be obtained with optimization of the NP assemblies, along with improvements in the instrumentation. Such NP assemblies offer prospects for in vivo, non-invasive detection of tumours along with scope for incorporation of drugs and their targeted and controlled release at tumour sites. These diagnostic agents combined with drug delivery systems could serve as a “theranostic agent”, an integration of diagnostics and therapeutics into a single platform.
Resumo:
Active Appearance Models (AAMs) employ a paradigm of inverting a synthesis model of how an object can vary in terms of shape and appearance. As a result, the ability of AAMs to register an unseen object image is intrinsically linked to two factors. First, how well the synthesis model can reconstruct the object image. Second, the degrees of freedom in the model. Fewer degrees of freedom yield a higher likelihood of good fitting performance. In this paper we look at how these seemingly contrasting factors can complement one another for the problem of AAM fitting of an ensemble of images stemming from a constrained set (e.g. an ensemble of face images of the same person).
Resumo:
As Earth's climate is rapidly changing, the impact of ambient temperature on health outcomes has attracted increasing attention in the recent time. Considerable number of excess deaths has been reported because of exposure to ambient hot and cold temperatures. However, relatively little research has been conducted on the relation between temperature and morbidity. The aim of this study was to characterize the relationship between both hot and cold temperatures and emergency hospital admissions in Brisbane, Australia, and to examine whether the relation varied by age and socioeconomic factors. It aimed to explore lag structures of temperature–morbidity association for respiratory causes, and to estimate the magnitude of emergency hospital admissions for cardiovascular diseases attributable to hot and cold temperatures for the large contribution of both diseases to the total emergency hospital admissions. A time series study design was applied using routinely collected data of daily emergency hospital admissions, weather and air pollution variables in Brisbane during 1996–2005. Poisson regression model with a distributed lag non-linear structure was adopted to assess the impact of temperature on emergency hospital admissions after adjustment for confounding factors. Both hot and cold effects were found, with higher risk of hot temperatures than that of cold temperatures. Increases in mean temperature above 24.2oC were associated with increased morbidity, especially for the elderly ≥ 75 years old with the largest effect. The magnitude of the risk estimates of hot temperature varied by age and socioeconomic factors. High population density, low household income, and unemployment appeared to modify the temperature–morbidity relation. There were different lag structures for hot and cold temperatures, with the acute hot effect within 3 days after hot exposure and about 2-week lagged cold effect on respiratory diseases. A strong harvesting effect after 3 days was evident for respiratory diseases. People suffering from cardiovascular diseases were found to be more vulnerable to hot temperatures than cold temperatures. However, more patients admitted for cardiovascular diseases were attributable to cold temperatures in Brisbane compared with hot temperatures. This study contributes to the knowledge base about the association between temperature and morbidity. It is vitally important in the context of ongoing climate change. The findings of this study may provide useful information for the development and implementation of public health policy and strategic initiatives designed to reduce and prevent the burden of disease due to the impact of climate change.