1000 resultados para Noha’s Ark


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The ice-covered Central Arctic Ocean is characterized by low primary productivity due to light and nutrient limitations. It has been speculated that the recent reduction in ice cover could lead to a substantial increase in primary production, but still little is known as to the fate of the ice-associated primary production, and of nutrient supply with increasing warming. This study presents results from the Central Arctic Ocean collected during summer 2012, when sea-ice reached a minimum extent since the onset of satellite observations. Net primary productivity (NPP) was measured in water column, sea ice and melt ponds by 14CO2 uptake at different irradiances. Photosynthesis vs. irradiance (PI) curves were established in laboratory experiments and used to upscale measured NPP to the deep Eurasian Basin (north of 78°N) using the irradiance-based Central Arctic Ocean Primary Productivity model (CAOPP). In addition, new annual production was calculated from the seasonal nutrient drawdown in the mixed layer since last winter. Results show that ice algae can contribute up to 60% to primary production in the Central Arctic at the end of the season. The ice-covered water column had lower NPP rates than open water probably due to light limitation. According to the nutrient ratios in the euphotic zone, nitrate limitation was detected in the Siberian Seas (Laptev Sea area), while silicate was the main limiting nutrient at the ice margin influenced by Atlantic waters. Although sea-ice cover was substantially reduced in 2012, total annual new production in the Eurasian Basin was 17 ± 7 Tg C/yr, which is similar to previous estimates. However, when including the contribution by sub-ice algal filaments, the annual production for the deep Eurasian Basin (north of 78°N) is 16 Tg C/yr higher than estimated before. Our data suggest that sub-ice algae might be responsible for potential local increases in NPP due to higher light availability under the ice, and their ability to benefit from a wider area of nutrients as they drift with the ice.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The speciation of iron was investigated in three shelf seas and three deep basins of the Arctic Ocean in 2007. The dissolved fraction (<0.2 µm) and a fraction < 1000 kDa were considered here. In addition, unfiltered samples were analyzed. Between 74 and 83% of dissolved iron was present in the fraction < 1000 kDa at all stations and depth, except at the chlorophyll maximum (42-64%). Distinct trends in iron concentrations and ligand characteristics were observed from the shelf seas toward the central deep basins, with a decrease of total dissolvable iron ([TDFe] > 3 nM on the shelves and [TDFe] < 2 nM in the Makarov Basin). A relative enrichment of particulate Fe toward the bottom was revealed at all stations, indicating Fe export toward the deep ocean. In deep waters, dissolved ligands became less saturated with Fe (increase of [Excess L]/[Fe]) from the Nansen Basin via the Amundsen Basin toward the Makarov Basin. This trend was explained by the reactivity of the ligands, higher (log alpha > 13.5) in the Nansen and Amundsen basins than in the Makarov Basin (log alpha <13) where the sources of Fe and ligands were limited. The ligands became nearly saturated with depth in the Amundsen and Nansen Basins, favoring Fe removal in the deep ocean, whereas in the deep Makarov Basin, they became unsaturated with depth. Still here scavenging occurred. Although scavenging of Fe was attenuated by the presence of unsaturated organic ligands, their low reactivity in combination with a lack of sources of Fe in the Makarov Basin might be the reason of a net export of Fe to the sediment.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Pack ice around Svalbard was sampled during the expedition ARK XIX/1 of RV "Polarstern" (March-April 2003) in order to determine environmental conditions, species composition and abundances of sea-ice algae and heterotrophic protists during late winter. As compared to other seasons, species diversity of algae (total 40 taxa) was not low, but abundances (5,000-448,000 cells/l) were lower by one to two orders of magnitude. Layers of high algal abundances were observed both at the bottom and in the ice interior. Inorganic nutrient concentrations (NO2, NO3, PO4, Si(OH)4) within the ice were mostly higher than during other seasons, and enriched compared to seawater by enrichment indices of 1.6-24.6 (corrected for losses through the desalination process). Thus, the survival of algae in Arctic pack ice was not limited by nutrients at the beginning of the productive season. Based on less-detailed physical data, light was considered as the most probable factor controlling the onset of the spring ice-algal bloom in the lower part of the ice, while low temperatures and salinities inhibit algal growth in the upper part of the ice at the end of the winter. Incorporation of ice algae probably took place during the entire freezing period. Possible overwintering strategies during the dark period, such as facultative heterotrophy, energy reserves, and resting spores are discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The under-ice habitat and fauna were studied during a typical winter situation at three stations in the western Barents Sea. Dense pack ice (7-10/10) prevailed and ice thickness ranged over <0.1-1.6 m covered by <0.1-0.6 m of snow. Air temperatures ranged between -1.8 and -27.5°C. The ice undersides were level, white and smooth. Temperature and salinity profiles in the under-ice water (0-5 m depth) were not stratified (T=-1.9 to -2.0°C and S=34.2-34.7). Concentrations of inorganic nutrients were high and concentrations of algal pigments were very low (0.02 µg chlorophyll a/l), indicating the state of biological winter. Contents of particulate organic carbon and nitrogen ranged over 84.2-241.3 and 5.3-16.4 µg/l, respectively, the C/N ratio over 11.2-15.5 pointing to the dominance of detritus in the under-ice water. Abundances of amphipods at the ice underside were lower than in other seasons: 0-1.8 ind/m**2 for Apherusa glacialis, 0-0.7 ind/m**2 for Onisimus spp., and 0-0.8 ind/m**2 for Gammarus wilkitzkii. A total of 22 metazoan taxa were found in the under-ice water, with copepods as the most diverse and numerous group. Total abundances ranged over 181-2,487 ind/m**3 (biomass: 70-2,439 µg C/m**3), showing lower values than in spring, summer and autumn. The dominant species was the calanoid copepod Pseudocalanus minutus (34-1,485 ind/m**3), contributing 19-65% to total abundances, followed by copepod nauplii (85-548 ind/m**3) and the cyclopoid copepod Oithona similis (44-262 ind/m**3). Sympagic (ice-associated) organisms occurred only rarely in the under-ice water layer.